Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 19(1): 65-70, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34916672

RESUMO

Self-labeling protein tags such as HaloTag are powerful tools that can label fusion proteins with synthetic fluorophores for use in fluorescence microscopy. Here we introduce HaloTag variants with either increased or decreased brightness and fluorescence lifetime compared with HaloTag7 when labeled with rhodamines. Combining these HaloTag variants enabled live-cell fluorescence lifetime multiplexing of three cellular targets in one spectral channel using a single fluorophore and the generation of a fluorescence lifetime-based biosensor. Additionally, the brightest HaloTag variant showed up to 40% higher brightness in live-cell imaging applications.


Assuntos
Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Hidrolases/química , Linhagem Celular , Cristalografia por Raios X , Fluorescência , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Microscopia Confocal , Microscopia de Fluorescência/métodos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Rodaminas/química
2.
J Am Chem Soc ; 136(19): 6878-80, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24766343

RESUMO

Single-molecule (SM) fluorescence microscopy was used to investigate the photochromic fluorescent system spiropyran-merocyanine (SP ↔ MC) interacting with gold nanoparticles (AuNPs). We observe a significant increase in the brightness of the emissive MC form, in the duration of its ON time, and in the total number of emitted photons. The spatial distribution of SMs with improved photophysical performance was obtained with 40 nm precision relative to the nearest AuNP. We demonstrate that even photochromic systems with poor photochemical performance for SM can become suitable for long time monitoring and high performance microscopy by interaction with metallic NP.


Assuntos
Benzopiranos/química , Corantes Fluorescentes/química , Ouro/química , Indóis/química , Nanopartículas Metálicas/química , Nitrocompostos/química , Fluorescência , Microscopia de Fluorescência
3.
Biophys J ; 102(7): 1598-607, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22500760

RESUMO

The morphological features of α-synuclein (AS) amyloid aggregation in vitro and in cells were elucidated at the nanoscale by far-field subdiffraction fluorescence localization microscopy. Labeling AS with rhodamine spiroamide probes allowed us to image AS fibrillar structures by fluorescence stochastic nanoscopy with an enhanced resolution at least 10-fold higher than that achieved with conventional, diffraction-limited techniques. The implementation of dual-color detection, combined with atomic force microscopy, revealed the propagation of individual fibrils in vitro. In cells, labeled protein appeared as amyloid aggregates of spheroidal morphology and subdiffraction sizes compatible with in vitro supramolecular intermediates perceived independently by atomic force microscopy and cryo-electron tomography. We estimated the number of monomeric protein units present in these minute structures. This approach is ideally suited for the investigation of the molecular mechanisms of amyloid formation both in vitro and in the cellular milieu.


Assuntos
Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , Nanoestruturas/química , Multimerização Proteica , alfa-Sinucleína/química , Cor , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Estrutura Secundária de Proteína , Rodaminas/química , alfa-Sinucleína/metabolismo
4.
J Am Chem Soc ; 131(23): 8102-7, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19462994

RESUMO

Quantum dots multifunctionalized with the amyloid protein alpha-synuclein act at nanomolar concentrations as very potent inducers of the aggregation of micromolar-millimolar bulk concentrations of the protein in vitro and in cells. Fibrillation in live cells, a process diagnostic of Parkinson's disease, is accelerated up to 15-fold with only approximately 100 nanoparticles. The combination with a tetracysteine-tagged form of alpha-synuclein specific for fluorogenic biarsenicals constitutes a very sensitive system for studying pathological amyloid formation in cells.


Assuntos
Amiloide/química , Amiloide/metabolismo , Técnicas Biossensoriais , Corantes Fluorescentes/química , Pontos Quânticos , Células HeLa , Humanos , Microscopia de Força Atômica , Microscopia de Fluorescência , alfa-Sinucleína/química
5.
Nat Cell Biol ; 20(4): 503, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29434373

RESUMO

In the version of this Letter originally published, the authors omitted a citation of an early study demonstrating topoisomerase-II-dependent sister chromatid resolution. This reference has now been added to the reference list as reference number 28, and the relevant text has been amended as follows to include its citation: 'Resolution must reflect the removal of sister-sister contacts, and we show here that Topo-IIα-mediated release of DNA catenation plays a major role (Fig. 4), in agreement with previous findings28, whereas, surprisingly, cohesin dissociation is not strictly required (Fig. 3).' Subsequent references have been renumbered. All online versions of the Letter have been updated to reflect this change.

6.
J Cell Biol ; 217(6): 1973-1984, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29572382

RESUMO

Chromosome organization in higher eukaryotes controls gene expression, DNA replication, and DNA repair. Genome mapping has revealed the functional units of chromatin at the submegabase scale as self-interacting regions called topologically associating domains (TADs) and showed they correspond to replication domains (RDs). A quantitative structural and dynamic description of RD behavior in the nucleus is, however, missing because visualization of dynamic subdiffraction-sized RDs remains challenging. Using fluorescence labeling of RDs combined with correlative live and super-resolution microscopy in situ, we determined biophysical parameters to characterize the internal organization, spacing, and mechanical coupling of RDs. We found that RDs are typically 150 nm in size and contain four co-replicating regions spaced 60 nm apart. Spatially neighboring RDs are spaced 300 nm apart and connected by highly flexible linker regions that couple their motion only <550 nm. Our pipeline allows a robust quantitative characterization of chromosome structure in situ and provides important biophysical parameters to understand general principles of chromatin organization.


Assuntos
Replicação do DNA , Imageamento Tridimensional , Animais , Linhagem Celular , DNA/química , Corantes Fluorescentes/metabolismo , Microscopia Confocal , Modelos Biológicos , Ratos , Coloração e Rotulagem
7.
Science ; 361(6398): 189-193, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30002254

RESUMO

At the beginning of mammalian life, the genetic material from each parent meets when the fertilized egg divides. It was previously thought that a single microtubule spindle is responsible for spatially combining the two genomes and then segregating them to create the two-cell embryo. We used light-sheet microscopy to show that two bipolar spindles form in the zygote and then independently congress the maternal and paternal genomes. These two spindles aligned their poles before anaphase but kept the parental genomes apart during the first cleavage. This spindle assembly mechanism provides a potential rationale for erroneous divisions into more than two blastomeric nuclei observed in mammalian zygotes and reveals the mechanism behind the observation that parental genomes occupy separate nuclear compartments in the two-cell embryo.


Assuntos
Segregação de Cromossomos , Embrião de Mamíferos/embriologia , Herança Materna/genética , Herança Paterna/genética , Polos do Fuso/metabolismo , Zigoto/metabolismo , Anáfase , Animais , Blastômeros/citologia , Núcleo Celular/metabolismo , Feminino , Genoma , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo
9.
Nat Cell Biol ; 18(6): 692-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27136266

RESUMO

The formation of mitotic chromosomes requires both compaction of chromatin and the resolution of replicated sister chromatids. Compaction occurs during mitotic prophase and prometaphase, and in prophase relies on the activity of condensin II complexes. Exactly when and how sister chromatid resolution occurs has been largely unknown, as has its molecular requirements. Here, we established a method to visualize sister resolution by sequential replication labelling with two distinct nucleotide derivatives. Quantitative three-dimensional imaging then allowed us to measure the resolution of sister chromatids throughout mitosis by calculating their non-overlapping volume within the whole chromosome. Unexpectedly, we found that sister chromatid resolution starts already at the beginning of prophase, proceeds concomitantly with chromatin compaction and is largely completed by the end of prophase. Sister chromatid resolution was abolished by inhibition of topoisomerase IIα and by depleting or preventing mitotic activation of condensin II, whereas blocking cohesin dissociation from chromosomes had little effect. Mitotic sister chromatid resolution is thus an intrinsic part of mitotic chromosome formation in prophase that relies largely on DNA decatenation and shares the molecular requirement for condensin II with prophase compaction.


Assuntos
Cromátides/metabolismo , Mitose/fisiologia , Prometáfase/fisiologia , Prófase/fisiologia , Adenosina Trifosfatases/metabolismo , Antígenos de Neoplasias/metabolismo , Linhagem Celular , Replicação do DNA/fisiologia , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Imageamento Tridimensional/métodos , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo
10.
Mol Biol Cell ; 25(16): 2522-36, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24943848

RESUMO

The advent of genome-wide RNA interference (RNAi)-based screens puts us in the position to identify genes for all functions human cells carry out. However, for many functions, assay complexity and cost make genome-scale knockdown experiments impossible. Methods to predict genes required for cell functions are therefore needed to focus RNAi screens from the whole genome on the most likely candidates. Although different bioinformatics tools for gene function prediction exist, they lack experimental validation and are therefore rarely used by experimentalists. To address this, we developed an effective computational gene selection strategy that represents public data about genes as graphs and then analyzes these graphs using kernels on graph nodes to predict functional relationships. To demonstrate its performance, we predicted human genes required for a poorly understood cellular function-mitotic chromosome condensation-and experimentally validated the top 100 candidates with a focused RNAi screen by automated microscopy. Quantitative analysis of the images demonstrated that the candidates were indeed strongly enriched in condensation genes, including the discovery of several new factors. By combining bioinformatics prediction with experimental validation, our study shows that kernels on graph nodes are powerful tools to integrate public biological data and predict genes involved in cellular functions of interest.


Assuntos
Segregação de Cromossomos/genética , Cromossomos/genética , Biologia Computacional/métodos , Genoma , Células HeLa , Humanos , Microscopia Confocal , Mitose , Fenótipo , Prognóstico , Interferência de RNA , RNA Interferente Pequeno/genética , Software
12.
J Phys Chem B ; 116(7): 2306-13, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22235949

RESUMO

The behavior of a fluorophore near a gold nanoparticle is rationalized by a theoretical description of the parameters that modify the fluorescence emission: nanoparticle-fluorophore distance, fluorescence quantum yield (φ(0)), and fluorophore absorption and emission spectra, to find optimum conditions for designing fluorophore-nanoparticle probes. The theoretical maximum gain in brightness of the nanoparticle-fluorophore system with respect to the isolated molecule increases almost inversely proportional to φ(0). The brightness enhancement in imaging experiments in vitro was assessed by using Au-SiO(2) core-shell nanoparticles deposited on glass. A ~13-fold emission brightness enhancement for weakly fluorescent molecules was observed. A significant increase in fluorophore photostability, rendering longer imaging times, was obtained for fluorophores interacting with gold nanoparticles incorporated by endocytosis in cells. Our results illustrate a way to increase imaging times and to study molecules in the vicinity of a metallic nanoparticle after photobleaching of background fluorescence.


Assuntos
Corantes Fluorescentes/química , Ouro/química , Nanopartículas Metálicas/química , Microscopia de Fluorescência/métodos , Animais , Células Cultivadas , Melanóforos/citologia , Dióxido de Silício/química , Xenopus laevis
13.
PLoS One ; 6(8): e23338, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21858077

RESUMO

We assessed the intracellular association states of the Parkinson's disease related protein α-synuclein (AS) in living cells by transfection with a functional recombinant mutant protein (AS-C4) bearing a tetracysteine tag binding the fluorogenic biarsenical ligands FlAsH and ReAsH, The aggregation states of AS-C4 were assessed by in situ microscopy of molecular translational mobility with FRAP (fluorescence recovery after photobleaching) and of local molecular density with confocal fluorescence anisotropy (CFA). FRAP recovery was quantitative and rapid in regions of free protein, whereas AS in larger aggregates was>80% immobile. A small 16% recovery characterized by an apparent diffusion constant of 0.03-0.04 µm(2)/s was attributed to the dynamics of smaller, associated forms of AS-C4 and the exchange of mobile species with the larger immobile aggregates. By CFA, the larger aggregates exhibited high brightness and very low anisotropy, consistent with homoFRET between closely packed AS, for which a Förster distance (R(o)) of 5.3 nm was calculated. Other bright regions had high anisotropy values, close to that of monomeric AS, and indicative of membrane-associated protein with both low mobility and low degree of association. The anisotropy-fluorescence intensity correlations also revealed regions of free protein or of small aggregates, undetectable by conventional fluorescence imaging alone. The combined strategy (FRAP+CFA) provides a highly sensitive means for elucidating both the dynamics and structural features of protein aggregates and other intracellular complexes in living cells, and can be extended to other amyloid systems and to drug screening protocols.


Assuntos
Polarização de Fluorescência/métodos , Recuperação de Fluorescência Após Fotodegradação/métodos , Microscopia Confocal/métodos , alfa-Sinucleína/química , Algoritmos , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Linhagem Celular Tumoral , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Fluorescência , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Cinética , Mutação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Célula Única/métodos , Transfecção , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA