Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Microsc Microanal ; 30(2): 342-358, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38525887

RESUMO

Deviation of blood flow from an optimal range is known to be associated with the initiation and progression of vascular pathologies. Important open questions remain about how the abnormal flow drives specific wall changes in pathologies such as cerebral aneurysms where the flow is highly heterogeneous and complex. This knowledge gap precludes the clinical use of readily available flow data to predict outcomes and improve treatment of these diseases. As both flow and the pathological wall changes are spatially heterogeneous, a crucial requirement for progress in this area is a methodology for acquiring and comapping local vascular wall biology data with local hemodynamic data. Here, we developed an imaging pipeline to address this pressing need. A protocol that employs scanning multiphoton microscopy was developed to obtain three-dimensional (3D) datasets for smooth muscle actin, collagen, and elastin in intact vascular specimens. A cluster analysis was introduced to objectively categorize the smooth muscle cells (SMC) across the vascular specimen based on SMC actin density. Finally, direct quantitative comparison of local flow and wall biology in 3D intact specimens was achieved by comapping both heterogeneous SMC data and wall thickness to patient-specific hemodynamic results.


Assuntos
Matriz Extracelular , Hemodinâmica , Microscopia de Fluorescência por Excitação Multifotônica , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Miócitos de Músculo Liso/fisiologia , Miócitos de Músculo Liso/citologia , Actinas/metabolismo , Animais , Colágeno/metabolismo , Humanos , Elastina/metabolismo , Elastina/análise , Imageamento Tridimensional/métodos , Artérias
2.
Arterioscler Thromb Vasc Biol ; 39(10): 2157-2167, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31462093

RESUMO

OBJECTIVE: Although the clinical and biological importance of calcification is well recognized for the extracerebral vasculature, its role in cerebral vascular disease, particularly, intracranial aneurysms (IAs), remains poorly understood. Extracerebrally, 2 distinct mechanisms drive calcification, a nonatherosclerotic, rapid mineralization in the media and a slower, inflammation driven, atherosclerotic mechanism in the intima. This study aims to determine the prevalence, distribution, and type (atherosclerotic, nonatherosclerotic) of calcification in IAs and assess differences in occurrence between ruptured and unruptured IAs. Approach and Results: Sixty-five 65 IA specimens (48 unruptured, 17 ruptured) were resected perioperatively. Calcification and lipid pools were analyzed nondestructively in intact samples using high resolution (0.35 µm) microcomputed tomography. Calcification is highly prevalent (78%) appearing as micro (<500 µm), meso (500 µm-1 mm), and macro (>1 mm) calcifications. Calcification manifests in IAs as both nonatherosclerotic (calcification distinct from lipid pools) and atherosclerotic (calcification in the presence of lipid pools) with 3 wall types: Type I-only calcification, no lipid pools (20/51, 39%), Type II-calcification and lipid pools, not colocalized (19/51, 37%), Type III-calcification colocalized with lipid pools (12/51, 24%). Ruptured IAs either had no calcifications or had nonatherosclerotic micro- or meso-calcifications (Type I or II), without macro-calcifications. CONCLUSIONS: Calcification in IAs is substantially more prevalent than previously reported and presents as both nonatherosclerotic and atherosclerotic types. Notably, ruptured aneurysms had only nonatherosclerotic calcification, had significantly lower calcification fraction, and did not contain macrocalcifications. Improved understanding of the role of calcification in IA pathology should lead to new therapeutic targets.


Assuntos
Aneurisma Roto/patologia , Aterosclerose/patologia , Calcinose/patologia , Processamento de Imagem Assistida por Computador/métodos , Aneurisma Intracraniano/patologia , Microtomografia por Raio-X/métodos , Idoso , Análise de Variância , Aterosclerose/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Calcinose/epidemiologia , Humanos , Aneurisma Intracraniano/cirurgia , Pessoa de Meia-Idade , Prevalência , Medição de Risco , Estudos de Amostragem , Índice de Gravidade de Doença , Estatísticas não Paramétricas , Coleta de Tecidos e Órgãos
3.
Neurosurg Focus ; 47(1): E21, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31261126

RESUMO

OBJECTIVE: Unruptured intracranial aneurysms (UIAs) are relatively common lesions that may cause devastating intracranial hemorrhage, thus producing considerable suffering and anxiety in those affected by the disease or an increased likelihood of developing it. Advances in the knowledge of the pathobiology behind intracranial aneurysm (IA) formation, progression, and rupture have led to preclinical testing of drug therapies that would prevent IA formation or progression. In parallel, novel biologically based diagnostic tools to estimate rupture risk are approaching clinical use. Arterial wall remodeling, triggered by flow and intramural stresses and mediated by inflammation, is relevant to both. METHODS: This review discusses the basis of flow-driven vessel remodeling and translates that knowledge to the observations made on the mechanisms of IA initiation and progression on studies using animal models of induced IA formation, study of human IA tissue samples, and study of patient-derived computational fluid dynamics models. RESULTS: Blood flow conditions leading to high wall shear stress (WSS) activate proinflammatory signaling in endothelial cells that recruits macrophages to the site exposed to high WSS, especially through macrophage chemoattractant protein 1 (MCP1). This macrophage infiltration leads to protease expression, which disrupts the internal elastic lamina and collagen matrix, leading to focal outward bulging of the wall and IA initiation. For the IA to grow, collagen remodeling and smooth muscle cell (SMC) proliferation are essential, because the fact that collagen does not distend much prevents the passive dilation of a focal weakness to a sizable IA. Chronic macrophage infiltration of the IA wall promotes this SMC-mediated growth and is a potential target for drug therapy. Once the IA wall grows, it is subjected to changes in wall tension and flow conditions as a result of the change in geometry and has to remodel accordingly to avoid rupture. Flow affects this remodeling process. CONCLUSIONS: Flow triggers an inflammatory reaction that predisposes the arterial wall to IA initiation and growth and affects the associated remodeling of the UIA wall. This chronic inflammation is a putative target for drug therapy that would stabilize UIAs or prevent UIA formation. Moreover, once this coupling between IA wall remodeling and flow is understood, data from patient-specific flow models can be gathered as part of the diagnostic workup and utilized to improve risk assessment for UIA initiation, progression, and eventual rupture.


Assuntos
Artérias Cerebrais/patologia , Circulação Cerebrovascular , Inflamação/patologia , Aneurisma Intracraniano/patologia , Humanos , Hidrodinâmica , Inflamação/complicações , Aneurisma Intracraniano/etiologia , Modelos Biológicos , Estresse Fisiológico
4.
ArXiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38855550

RESUMO

Current mechanical models of the bladder largely idealize the bladder as spherical with uniform thickness. This present study aims to investigate this idealization using micro-CT to generate 3D reconstructed models of rat bladders at 10-20 micrometer resolution in both voided and filled states. Applied to three rat bladders, this approach identifies shape, volume, and thickness variations under different pressures. These results demonstrate the filling/voiding process is far from the idealized spherical inflation/contraction. However, the geometry idealizations may be reasonable in cases where the filled bladder geometry is of importance, such as in studies of growth and remodeling.

5.
J Neurointerv Surg ; 16(4): 392-397, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-37230750

RESUMO

BACKGROUND: The presence of blebs increases the rupture risk of intracranial aneurysms (IAs). OBJECTIVE: To evaluate whether cross-sectional bleb formation models can identify aneurysms with focalized enlargement in longitudinal series. METHODS: Hemodynamic, geometric, and anatomical variables derived from computational fluid dynamics models of 2265 IAs from a cross-sectional dataset were used to train machine learning (ML) models for bleb development. ML algorithms, including logistic regression, random forest, bagging method, support vector machine, and K-nearest neighbors, were validated using an independent cross-sectional dataset of 266 IAs. The models' ability to identify aneurysms with focalized enlargement was evaluated using a separate longitudinal dataset of 174 IAs. Model performance was quantified by the area under the receiving operating characteristic curve (AUC), the sensitivity and specificity, positive predictive value, negative predictive value, F1 score, balanced accuracy, and misclassification error. RESULTS: The final model, with three hemodynamic and four geometrical variables, along with aneurysm location and morphology, identified strong inflow jets, non-uniform wall shear stress with high peaks, larger sizes, and elongated shapes as indicators of a higher risk of focal growth over time. The logistic regression model demonstrated the best performance on the longitudinal series, achieving an AUC of 0.9, sensitivity of 85%, specificity of 75%, balanced accuracy of 80%, and a misclassification error of 21%. CONCLUSIONS: Models trained with cross-sectional data can identify aneurysms prone to future focalized growth with good accuracy. These models could potentially be used as early indicators of future risk in clinical practice.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Humanos , Estudos Transversais , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Hemodinâmica , Aprendizado de Máquina , Aneurisma Roto/cirurgia
6.
ArXiv ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38313202

RESUMO

Vascular calcification is implicated as an important factor in major adverse cardiovascular events (MACE), including heart attack and stroke. A controversy remains over how to integrate the diverse forms of vascular calcification into clinical risk assessment tools. Even the commonly used calcium score for coronary arteries, which assumes risk scales positively with total calcification, has important inconsistencies. Fundamental studies are needed to determine how risk is influenced by the diverse calcification phenotypes. However, studies of these kinds are hindered by the lack of high-throughput, objective, and non-destructive tools for classifying calcification in imaging data sets. Here, we introduce a new classification system for phenotyping calcification along with a semi-automated, non-destructive pipeline that can distinguish these phenotypes in even atherosclerotic tissues. The pipeline includes a deep-learning-based framework for segmenting lipid pools in noisy µ-CT images and an unsupervised clustering framework for categorizing calcification based on size, clustering, and topology. This approach is illustrated for five vascular specimens, providing phenotyping for thousands of calcification particles across as many as 3200 images in less than seven hours. Average Dice Similarity Coefficients of 0.96 and 0.87 could be achieved for tissue and lipid pool, respectively, with training and validation needed on only 13 images despite the high heterogeneity in these tissues. By introducing an efficient and comprehensive approach to phenotyping calcification, this work enables large-scale studies to identify a more reliable indicator of the risk of cardiovascular events, a leading cause of global mortality and morbidity.

7.
ArXiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38764590

RESUMO

The smooth muscle bundles (SMBs) in the bladder act as contractile elements which enable the bladder to void effectively. In contrast to skeletal muscles, these bundles are not highly aligned, rather they are oriented more heterogeneously throughout the bladder wall. In this work, for the first time, this regional orientation of the SMBs is quantified across the whole bladder, without the need for optical clearing or cryosectioning. Immunohistochemistry staining was utilized to visualize smooth muscle cell actin in multiphoton microscopy (MPM) images of bladder smooth muscle bundles (SMBs). Feature vectors for each pixel were generated using a range of filters, including Gaussian blur, Gaussian gradient magnitude, Laplacian of Gaussian, Hessian eigenvalues, structure tensor eigenvalues, Gabor, and Sobel gradients. A Random Forest classifier was subsequently trained to automate the segmentation of SMBs in the MPM images. Finally, the orientation of SMBs in each bladder region was quantified using the CT-FIRE package. This information is essential for biomechanical models of the bladder that include contractile elements.

8.
Int Neurourol J ; 28(Suppl 1): 12-33, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38461853

RESUMO

Overactive bladder (OAB) is a symptom-based syndrome defined by urinary urgency, frequency, and nocturia with or without urge incontinence. The causative pathology is diverse; including bladder outlet obstruction (BOO), bladder ischemia, aging, metabolic syndrome, psychological stress, affective disorder, urinary microbiome, localized and systemic inflammatory responses, etc. Several hypotheses have been suggested as mechanisms of OAB generation; among them, neurogenic, myogenic, and urothelial mechanisms are well-known hypotheses. Also, a series of local signals called autonomous myogenic contraction, micromotion, or afferent noises, which can occur during bladder filling, may be induced by the leak of acetylcholine (ACh) or urothelial release of adenosine triphosphate (ATP). They can be transmitted to the central nervous system through afferent fibers to trigger coordinated urgency-related detrusor contractions. Antimuscarinics, commonly known to induce smooth muscle relaxation by competitive blockage of muscarinic receptors in the parasympathetic postganglionic nerve, have a minimal effect on detrusor contraction within therapeutic doses. In fact, they have a predominant role in preventing signals in the afferent nerve transmission process. ß3-adrenergic receptor (AR) agonists inhibit afferent signals by predominant inhibition of mechanosensitive Aδ-fibers in the normal bladder. However, in pathologic conditions such as spinal cord injury, it seems to inhibit capsaicin-sensitive C-fibers. Particularly, mirabegron, a ß3-agonist, prevents ACh release in the BOO-induced detrusor overactivity model by parasympathetic prejunctional mechanisms. A recent study also revealed that vibegron may have 2 mechanisms of action: inhibition of ACh from cholinergic efferent nerves in the detrusor and afferent inhibition via urothelial ß3-AR.

9.
Int J Numer Method Biomed Eng ; : e3837, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839043

RESUMO

The mechanisms behind intracranial aneurysm formation and rupture are not fully understood, with factors such as location, patient demographics, and hemodynamics playing a role. Additionally, the significance of anatomical features like blebs in ruptures is debated. This highlights the necessity for comprehensive research that combines patient-specific risk factors with a detailed analysis of local hemodynamic characteristics at bleb and rupture sites. Our study analyzed 359 intracranial aneurysms from 268 patients, reconstructing patient-specific models for hemodynamic simulations based on 3D rotational angiographic images and intraoperative videos. We identified aneurysm subregions and delineated rupture sites, characterizing blebs and their regional overlap, employing statistical comparisons across demographics, and other risk factors. This work identifies patterns in aneurysm rupture sites, predominantly at the dome, with variations across patient demographics. Hypertensive and anterior communicating artery (ACom) aneurysms showed specific rupture patterns and bleb associations, indicating two pathways: high-flow in ACom with thin blebs at impingement sites and low-flow, oscillatory conditions in middle cerebral artery (MCA) aneurysms fostering thick blebs. Bleb characteristics varied with gender, age, and smoking, linking rupture risks to hemodynamic factors and patient profiles. These insights enhance understanding of the hemodynamic mechanisms leading to rupture events. This analysis elucidates the role of localized hemodynamics in intracranial aneurysm rupture, challenging the emphasis on location by revealing how flow variations influence stability and risk. We identify two pathways to wall failure-high-flow and low-flow conditions-highlighting the complexity of aneurysm behavior. Additionally, this research advances our knowledge of how inherent patient-specific characteristics impact these processes, which need further investigation.

10.
Int J Numer Method Biomed Eng ; : e3844, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952068

RESUMO

Intracranial aneurysms (IAs) pose severe health risks influenced by hemodynamics. This study focuses on the intricate characterization of hemodynamic conditions within the IA walls and their influence on bleb development, aiming to enhance understanding of aneurysm stability and the risk of rupture. The methods emphasized utilizing a comprehensive dataset of 359 IAs and 213 IA blebs from 268 patients to reconstruct patient-specific vascular models, analyzing blood flow using finite element methods to solve the unsteady Navier-Stokes equations, the segmentation of aneurysm wall subregions and the hemodynamic metrics wall shear stress (WSS), its metrics, and the critical points in WSS fields were computed and analyzed across different aneurysm subregions defined by saccular, streamwise, and topographical divisions. The results revealed significant variations in these metrics, correlating distinct hemodynamic environments with wall features on the aneurysm walls, such as bleb formation. Critical findings indicated that regions with low WSS and high OSI, particularly in the body and central regions of aneurysms, are prone to conditions that promote bleb formation. Conversely, areas exposed to high WSS and positive divergence, like the aneurysm neck, inflow, and outflow regions, exhibited a different but substantial risk profile for bleb development, influenced by flow impingements and convergences. These insights highlight the complexity of aneurysm behavior, suggesting that both high and low-shear environments can contribute to aneurysm pathology through distinct mechanisms.

11.
Cardiovasc Eng Technol ; 14(1): 92-103, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35819581

RESUMO

PURPOSE: Blebs are known risk factors for intracranial aneurysm (IA) rupture. We analyzed differences between IAs that ruptured with blebs and those that ruptured without developing blebs to identify distinguishing characteristics among them and suggest possible mechanistic implications. METHODS: Using image-based models, 25 hemodynamic and geometric parameters were compared between ruptured IAs with and without blebs (n = 673), stratified by location. Hemodynamic and geometric differences between bifurcation and sidewall aneurysms and for aneurysms at five locations were also analyzed. RESULTS: Ruptured aneurysms harboring blebs were exposed to higher flow conditions than aneurysms that ruptured without developing blebs, and this was consistent across locations. Bifurcation aneurysms were exposed to higher flow conditions than sidewall aneurysms. They had larger maximum wall shear stress (WSS), more concentrated WSS distribution, and larger numbers of critical points than sidewall aneurysms. Additionally, bifurcation aneurysms were larger, more elongated, and had more distorted shapes than sidewall aneurysms. Aneurysm morphology was associated with aneurysm location (p < 0.01). Flow conditions were different between aneurysm locations. CONCLUSION: Aneurysms at different locations are likely to develop into varying morphologies and thus be exposed to diverse flow conditions that may predispose them to follow distinct pathways towards rupture with or without bleb development. This could explain the diverse rupture rates and bleb presence in aneurysms at different locations.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Humanos , Hemodinâmica , Aneurisma Intracraniano/diagnóstico por imagem , Fatores de Risco , Estresse Mecânico
12.
Int J Numer Method Biomed Eng ; 39(8): e3740, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37288602

RESUMO

The goal of this study was to test if CFD-based virtual angiograms could be used to automatically discriminate between intracranial aneurysms (IAs) with and without flow stagnation. Time density curves (TDC) were extracted from patient digital subtraction angiography (DSA) image sequences by computing the average gray level intensity inside the aneurysm region and used to define injection profiles for each subject. Subject-specific 3D models were reconstructed from 3D rotational angiography (3DRA) and computational fluid dynamics (CFD) simulations were performed to simulate the blood flow inside IAs. Transport equations were solved numerically to simulate the dynamics of contrast injection into the parent arteries and IAs and then the contrast retention time (RET) was calculated. The importance of gravitational pooling of contrast agent within the aneurysm was evaluated by modeling contrast agent and blood as a mixture of two fluids with different densities and viscosities. Virtual angiograms can reproduce DSA sequences if the correct injection profile is used. RET can identify aneurysms with significant flow stagnation even when the injection profile is not known. Using a small sample of 14 IAs of which seven were previously classified as having flow stagnation, it was found that a threshold RET value of 0.46 s can successfully identify flow stagnation. CFD-based prediction of stagnation was in more than 90% agreement with independent visual DSA assessment of stagnation in a second sample of 34 IAs. While gravitational pooling prolonged contrast retention time it did not affect the predictive capabilities of RET. CFD-based virtual angiograms can detect flow stagnation in IAs and can be used to automatically identify aneurysms with flow stagnation even without including gravitational effects on contrast agents.


Assuntos
Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Meios de Contraste , Hidrodinâmica , Angiografia Digital , Hemodinâmica , Imageamento Tridimensional
13.
Artigo em Inglês | MEDLINE | ID: mdl-37463319

RESUMO

BACKGROUND: Lower urinary tract syndrome (LUTS) is a group of urinary tract symptoms and signs which can include urinary incontinence. Advancing age is a major risk factors for LUTS; however the underlying biochemical mechanisms of age-related LUTS remain unknown. HX (hypoxanthine) is a purine metabolite associated with generation of tissue damaging reactive oxygen species (ROS). This study tested the hypothesis that exposure of the adult bladder to HX-ROS over time damages key LUT elements, mimicking qualitatively some of the changes observed with aging. METHODS: Adult 3-month-old female Fischer 344 (F344) rats were treated with vehicle or HX (10 mg/kg/day; 3 weeks) administered in drinking water. Targeted purine metabolomics and molecular approaches were used to assess purine metabolites and biomarkers for oxidative stress and cellular damage. Biomechanical approaches assessed LUT structure and measurements of LUT function (using custom-metabolic cages and cystometry) were also employed. RESULTS: HX exposure increased biomarkers indicative of oxidative stress, pathophysiological ROS production and depletion of cellular energy with declines in NAD + levels. Moreover, HX treatment caused bladder remodeling and decreased the intercontraction interval and leak point pressure (surrogate measure to assess stress urinary incontinence). CONCLUSIONS: These studies provide evidence that in adult rats chronic exposure to HX causes changes in voiding behavior and in bladder structure resembling alterations observed with aging. These results suggest that increased levels of uro-damaging HX were associated with ROS/oxidative stress-associated cellular damage which may be central to age-associated development of LUTS, opening up potential opportunities for geroscience-guided interventions.

14.
J Mech Behav Biomed Mater ; 134: 105337, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35863296

RESUMO

We present a constrained mixture-micturition-growth (CMMG) model for the bladder. It simulates bladder mechanics, voiding function (micturition) and tissue adaptations in response to altered biomechanical conditions. The CMMG model is calibrated with both in vivo and in vitro data from healthy male rat urinary bladders (cystometry, bioimaging of wall structure, mechanical testing) and applied to simulate the growth and remodeling (G&R) response to partial bladder outlet obstruction (BOO). The bladder wall is represented as a multi-layered, anisotropic, nonlinear constrained mixture. A short time scale micturition component of the CMMG model accounts for the active and passive mechanics of voiding. Over a second, longer time scale, G&R algorithms for the evolution of both cellular and extracellular constituents act to maintain/restore bladder (homeostatic) functionality. The CMMG model is applied to a spherical membrane model of the BOO bladder utilizing temporal data from an experimental male rodent model to parameterize and then verify the model. Consistent with the experimental studies of BOO, the model predicts: an initial loss of voiding capacity followed by hypertrophy of SMC to restore voiding function; bladder enlargement; collagen remodeling to maintain its role as a protective sheath; and increased voiding duration with lower average flow rate. This CMMG model enables a mechanistic approach for investigating the bladder's structure-function relationship and its adaption in pathological conditions. While the approach is illustrated with a conceptual spherical bladder model, it provides the basis for application of the CMMG model to anatomical geometries. Such a mechanistic approach has promise as an in silico tool for the rational development of new surgical and pharmacological treatments for bladder diseases such as BOO.


Assuntos
Obstrução do Colo da Bexiga Urinária , Animais , Modelos Animais de Doenças , Guanina/análogos & derivados , Masculino , Ratos , Bexiga Urinária , Obstrução do Colo da Bexiga Urinária/patologia , Micção/fisiologia , Urodinâmica
15.
J Neurointerv Surg ; 14(10): 1002-1007, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34686573

RESUMO

BACKGROUND: Bleb presence in intracranial aneurysms (IAs) is a known indication of instability and vulnerability. OBJECTIVE: To develop and evaluate predictive models of bleb development in IAs based on hemodynamics, geometry, anatomical location, and patient population. METHODS: Cross-sectional data (one time point) of 2395 IAs were used for training bleb formation models using machine learning (random forest, support vector machine, logistic regression, k-nearest neighbor, and bagging). Aneurysm hemodynamics and geometry were characterized using image-based computational fluid dynamics. A separate dataset with 266 aneurysms was used for model evaluation. Model performance was quantified by the area under the receiving operating characteristic curve (AUC), true positive rate (TPR), false positive rate (FPR), precision, and balanced accuracy. RESULTS: The final model retained 18 variables, including hemodynamic, geometrical, location, multiplicity, and morphology parameters, and patient population. Generally, strong and concentrated inflow jets, high speed, complex and unstable flow patterns, and concentrated, oscillatory, and heterogeneous wall shear stress patterns together with larger, more elongated, and more distorted shapes were associated with bleb formation. The best performance on the validation set was achieved by the random forest model (AUC=0.82, TPR=91%, FPR=36%, misclassification error=27%). CONCLUSIONS: Based on the premise that aneurysm characteristics prior to bleb formation resemble those derived from vascular reconstructions with their blebs virtually removed, machine learning models can identify aneurysms prone to bleb development with good accuracy. Pending further validation with longitudinal data, these models may prove valuable for assessing the propensity of IAs to progress to vulnerable states and potentially rupturing.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Humanos , Aneurisma Roto/epidemiologia , Estudos Transversais , Hemodinâmica , Hidrodinâmica , Aneurisma Intracraniano/complicações , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Aprendizado de Máquina
16.
J Neurointerv Surg ; 13(3): 231-236, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32680874

RESUMO

BACKGROUND: Although it is generally believed that blebs represent weaker spots in the walls of intracranial aneurysms (IAs), it is largely unknown which aneurysm characteristics favor their development. OBJECTIVE: To investigate possible associations between aneurysm hemodynamic and geometric characteristics and the development of blebs in intracranial aneurysms. METHODS: A total of 270 IAs in 199 patients selected for surgical clipping were studied. Blebs were visually identified and interactively marked on patient-specific vascular models constructed from presurgical images. Blebs were then deleted from the vascular reconstruction to approximate the aneurysm before bleb formation. Computational fluid dynamics studies were performed in these models and in cases without blebs. Hemodynamic and geometric characteristics of aneurysms with and without blebs were compared. RESULTS: A total of 173 aneurysms had no blebs, while 97 aneurysms had a total of 122 blebs. Aneurysms favoring bleb formation had stronger (p<0.0001) and more concentrated inflow jets (p<0.0001), higher flow velocity (p=0.0061), more complex (p<0.0001) and unstable (p=0.0157) flow patterns, larger maximum wall shear stress (WSS; p<0.0001), more concentrated (p=0.0005) and oscillatory (p=0.0004) WSS distribution, and a more heterogeneous WSS field (p<0.0001), than aneurysms without blebs. They were also larger (p<0.0001), more elongated (p<0.0001), had wider necks (p=0.0002), and more distorted and irregular shapes (p<0.0001). CONCLUSIONS: Strong and concentrated inflow jets, high-speed, complex, and unstable flow patterns, and concentrated, oscillatory, and heterogeneous WSS patterns favor the formation of blebs in IAs. Blebs are more likely to form in large, elongated, and irregularly shaped aneurysms. These adverse characteristics could be considered signs of aneurysm instability when evaluating aneurysms for conservative observation or treatment.


Assuntos
Aneurisma Roto , Hemodinâmica , Aneurisma Intracraniano , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Aneurisma Roto/diagnóstico por imagem , Aneurisma Roto/fisiopatologia , Aneurisma Roto/cirurgia , Hemodinâmica/fisiologia , Hidrodinâmica , Imageamento Tridimensional/métodos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/fisiopatologia , Aneurisma Intracraniano/cirurgia , Fatores de Risco , Estresse Mecânico
17.
Int J Numer Method Biomed Eng ; 37(1): e3415, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33205887

RESUMO

While previous studies have identified many risk factors for the progression and rupture of cerebral aneurysms, the changes in aneurysm flow characteristics during its evolution are not fully understood. This work analyzes the changes in the aneurysm hemodynamic environment from its initial development to later stages when the aneurysm has substantially enlarged. A total of 88 aneurysms at four locations were studied with image based computational fluid dynamics (CFD). Two synthetic sequences representing the aneurysm geometry at three earlier stages were generated by shrinking the aneurysm sac while keeping the neck fixed or shrinking the neck simultaneously. The flow conditions were then quantitatively compared between these two modes of evolution. As aneurysms enlarged, the inflow rate increased in growing neck sequences, but decreased in fixed neck sequences. The inflow jet became more concentrated in both sequences. The mean aneurysm flow velocity and wall shear stress decreased in both sequences, but they decreased faster in enlarging aneurysms if the neck was fixed. Additionally, the intra-aneurysmal flows became more complex and more unstable, wall shear stress distribution became more oscillatory, and the area under low wall shear stress increased for both sequences. The evolution of flow characteristics of aneurysms with fixed and growing necks are different. The observed trends suggest that fixed neck aneurysms may evolve towards a flow environment characteristic of stable aneurysms faster than aneurysms with growing necks, which could also evolve towards a more disfavorable environment.


Assuntos
Aneurisma Intracraniano , Hemodinâmica , Humanos , Hidrodinâmica , Aneurisma Intracraniano/diagnóstico por imagem , Estresse Mecânico
18.
J Neurointerv Surg ; 13(7): 642-646, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33020208

RESUMO

BACKGROUND: Blebs are important secondary structures of intracranial aneurysms associated with increased rupture risk and can affect local wall stress and hemodynamics. Mechanisms of bleb development and evolution are not clearly understood. We investigate the relationship between blebs with different wall characteristics and local hemodynamics and rupture sites. METHODS: Blebs with different wall appearances in intra-operative videos were analyzed with image-based computational fluid dynamics. Thin red blebs were compared against thick atherosclerotic/hyperplastic white/yellow blebs. Rupture points were identified in videos of ruptured aneurysms harboring blebs. RESULTS: Thin blebs tended to be closer to the inflow than atherosclerotic blebs of the same aneurysm (P=0.0234). Blebs near the inflow had higher velocity (P=0.0213), vorticity (P=0.0057), shear strain rate (P=0.0084), wall shear stress (WSS) (P=0.0085), and WSS gradient (P=0.0151) than blebs far from the inflow. In a subset of 12 ruptured aneurysms harboring blebs, rupture points were associated with thin blebs in 42% of aneurysms, atherosclerotic blebs in 25%, and were away from blebs in the remaining 33%. CONCLUSIONS: Not all blebs are equal; some have thin translucent walls while others have thick atherosclerotic walls. Thin blebs tend to be located closer to the inflow than atherosclerotic blebs. Blebs near the inflow are exposed to stronger flows with higher and spatially variable WSS than blebs far from the inflow which tend to have uniformly lower WSS. Aneurysms can rupture at thin blebs, atherosclerotic blebs, and even away from blebs. Further study of wall failure in aneurysms with different bleb types is needed.


Assuntos
Aneurisma Roto , Hemodinâmica , Hidrodinâmica , Aneurisma Intracraniano , Feminino , Humanos , Masculino , Aneurisma Roto/diagnóstico por imagem , Aneurisma Roto/fisiopatologia , Aneurisma Roto/cirurgia , Hemodinâmica/fisiologia , Imageamento Tridimensional/métodos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/fisiopatologia , Aneurisma Intracraniano/cirurgia , Microcirurgia/métodos , Fatores de Risco , Estresse Mecânico
19.
J Neurointerv Surg ; 13(3): 226-230, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32680877

RESUMO

BACKGROUND: Blebs are rupture risk factors in intracranial aneurysms (IAs), but their prevalence, distribution, and associations with clinical factors as well as their causes and effects on aneurysm vulnerability remain unclear. METHODS: A total of 122 blebs in 270 IAs selected for surgery were studied using patient-specific vascular reconstructions from 3D angiographic images. Bleb geometry, location on the aneurysm, and frequency of occurrence in aneurysms at different locations were analyzed. Associations between gender, age, smoking, hypertension, hormone therapy, dental infection, and presence of blebs were investigated. RESULTS: Of all aneurysms with blebs, 77% had a single bleb and 23% had multiple blebs. Only 6% of blebs were at the neck, while 46% were in the body and 48% in the dome. Aneurysms with blebs were larger (p<0.0001), more elongated (p=0.0002), and with wider necks than aneurysms without blebs. Bleb presence was associated with dental infection (p=0.0426) and negatively associated with hormone therapy (p=0.0426) in women. Anterior and posterior communicating arteries had larger percentages of aneurysms with blebs than internal carotid arteries. Patients with a history of hypertension tended to have a larger percentage of aneurysms with blebs. However, these trends did not reach significance in this sample. CONCLUSIONS: Blebs are common in IAs, and most aneurysms harboring blebs have a single bleb. Blebs in the aneurysm neck are rare, but they are equally common in the body and dome. The presence of blebs in IAs was associated with dental infection, and negatively associated with hormone replacement therapy.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Aneurisma Roto/diagnóstico por imagem , Aneurisma Roto/epidemiologia , Aneurisma Roto/cirurgia , Artéria Carótida Interna/fisiopatologia , Angiografia Cerebral/métodos , Hipertensão/diagnóstico por imagem , Hipertensão/epidemiologia , Hipertensão/cirurgia , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/epidemiologia , Aneurisma Intracraniano/cirurgia , Prevalência , Fatores de Risco , Fumar/efeitos adversos , Fumar/epidemiologia
20.
J Biomech Eng ; 132(9): 091009, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20815643

RESUMO

Computational fluid dynamics (CFD) studies provide a valuable tool for evaluating the role of hemodynamics in vascular diseases such as cerebral aneurysms and atherosclerosis. However, such models necessarily only include isolated segments of the vasculature. In this work, we evaluate the influence of geometric approximations in vascular anatomy on hemodynamics in elastase induced saccular aneurysms in rabbits. One representative high aspect ratio (AR-height/neck width) aneurysm and one low AR aneurysm were created at the origin of the right common carotid artery in two New Zealand white rabbits. Three-dimensional (3D) reconstructions of the aneurysm and surrounding arteries were created using 3D rotational angiographic data. Five models with varying extents of neighboring vasculature were created for both the high and low AR cases. A reference model included the aneurysm sac, left common carotid artery (LCCA), aortic arch, and downstream trifurcation/quadrification. Three-dimensional, pulsatile CFD studies were performed and streamlines, wall shear stress (WSS), oscillatory shear index, and cross sectional velocity were compared between the models. The influence of the vascular domain on intra-aneurysmal hemodynamics varied between the low and high AR cases. For the high AR case, even a simple model including only the aneurysm, a small section of neighboring vasculature, and simple extensions captured the main features of the steamline and WSS distribution predicted by the reference model. However, the WSS distribution in the low AR case was more strongly influenced by the extent of vasculature. In particular, it was necessary to include the downstream quadrification and upstream LCCA to obtain good predictions of WSS. The findings in this work demonstrate the accuracy of CFD results can be compromised if insufficient neighboring vessels are included in studies of hemodynamics in elastase induced rabbit aneurysms. Consideration of aspect ratio, hemodynamic parameters of interest, and acceptable magnitude of error when selecting the vascular domain will increase reliability of the results while decreasing computational time.


Assuntos
Hemodinâmica , Hidrodinâmica , Aneurisma Intracraniano/diagnóstico por imagem , Modelos Biológicos , Angiografia , Animais , Artérias/fisiopatologia , Angiografia Cerebral/métodos , Simulação por Computador , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Coelhos , Padrões de Referência , Sensibilidade e Especificidade , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA