Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2469, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503762

RESUMO

Phylogenetic analyses over the last two decades have united a few small, and previously orphan clades, the nematodermatids, acoels and xenoturbelids, into the phylum Xenacoelomorpha. Some phylogenetic analyses support a sister relationship between Xenacoelomorpha and Ambulacraria (Xenambulacraria), while others suggest that Xenacoelomorpha may be sister to the rest of the Bilateria (Nephrozoa). An understanding of the cell type complements of Xenacoelomorphs is essential to assessing these alternatives as well as to our broader understanding of bilaterian cell type evolution. Employing whole organism single-cell RNA-seq in the marine xenacoelomorph worm Xenoturbella bocki, we show that Xenambulacrarian nerve nets share regulatory features and a peptidergic identity with those found in cnidarians and protostomes and more broadly share muscle and gland cell similarities with other metazoans. Taken together, these data are consistent with broad homologies of animal gland, muscle, and neurons as well as more specific affinities between Xenoturbella and acoel gut and epidermal tissues, consistent with the monophyly of Xenacoelomorpha.


Assuntos
Filogenia , Animais
2.
Artigo em Inglês | MEDLINE | ID: mdl-30105092

RESUMO

The Dicyemida and Orthonectida are two groups of tiny, simple, vermiform parasites that have historically been united in a group named the Mesozoa. Both Dicyemida and Orthonectida have just two cell layers and appear to lack any defined tissues. They were initially thought to be evolutionary intermediates between protozoans and metazoans but more recent analyses indicate that they are protostomian metazoans that have undergone secondary simplification from a complex ancestor. Here we describe the first almost complete mitochondrial genome sequence from an orthonectid, Intoshia linei, and describe nine and eight mitochondrial protein-coding genes from Dicyema sp. and Dicyema japonicum, respectively. The 14,247 base pair long I. linei sequence has typical metazoan gene content, but is exceptionally AT-rich, and has a unique gene order. The data we have analysed from the Dicyemida provide very limited support for the suggestion that dicyemid mitochondrial genes are found on discrete mini-circles, as opposed to the large circular mitochondrial genomes that are typical of the Metazoa. The cox1 gene from dicyemid species has a series of conserved, in-frame deletions that is unique to this lineage. Using cox1 genes from across the genus Dicyema, we report the first internal phylogeny of this group.

3.
Curr Biol ; 28(12): 1970-1974.e3, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29861137

RESUMO

The animal groups of Orthonectida and Dicyemida are tiny, extremely simple, vermiform endoparasites of various marine animals and have been linked in the Mesozoa (Figure 1). The Orthonectida (Figures 1A and 1B) have a few hundred cells, including a nervous system of just ten cells [2], and the Dicyemida (Figure 1C) are even simpler, with ∼40 cells [3]. They are classic "Problematica" [4]-the name Mesozoa suggests an evolutionary position intermediate between Protozoa and Metazoa (animals) [5] and implies that their simplicity is a primitive state, but molecular data have shown they are members of Lophotrochozoa within Bilateria [6-9], which means that they derive from a more complex ancestor. Their precise affinities remain uncertain, however, and it is disputed whether they even constitute a clade. Ascertaining their affinities is complicated by the very fast evolution observed in their genes, potentially leading to the common systematic error of long-branch attraction (LBA) [10]. Here, we use mitochondrial and nuclear gene sequence data and show that both dicyemids and orthonectids are members of the Lophotrochozoa. Carefully addressing the effects of unequal rates of evolution, we show that the Mesozoa is polyphyletic. While the precise position of dicyemids remains unresolved within Lophotrochozoa, we identify orthonectids as members of the phylum Annelida. This result reveals one of the most extreme cases of body-plan simplification in the animal kingdom; our finding makes sense of an annelid-like cuticle in orthonectids [2] and suggests that the circular muscle cells repeated along their body [11] may be segmental in origin.


Assuntos
Anelídeos/classificação , Filogenia , Sequência de Aminoácidos , Animais , Anelídeos/anatomia & histologia , Anelídeos/genética , Feminino , Alinhamento de Sequência
4.
Sci Rep ; 7(1): 1847, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28500313

RESUMO

Acoels are small, ubiquitous - but understudied - marine worms with a very simple body plan. Their internal phylogeny is still not fully resolved, and the position of their proposed phylum Xenacoelomorpha remains debated. Here we describe mitochondrial genome sequences from the acoels Paratomella rubra and Isodiametra pulchra, and the complete mitochondrial genome of the acoel Archaphanostoma ylvae. The P. rubra and A. ylvae sequences are typical for metazoans in size and gene content. The larger I. pulchra  mitochondrial genome contains both ribosomal genes, 21 tRNAs, but only 11 protein-coding genes. We find evidence suggesting a duplicated sequence in the I. pulchra mitochondrial genome. The P. rubra, I. pulchra and A. ylvae mitochondria have a unique genome organisation in comparison to other metazoan mitochondrial genomes. We found a large degree of protein-coding gene and tRNA overlap with little non-coding sequence in the compact P. rubra genome. Conversely, the A. ylvae and I. pulchra genomes have many long non-coding sequences between genes, likely driving genome size expansion in the latter. Phylogenetic trees inferred from mitochondrial genes retrieve Xenacoelomorpha as an early branching taxon in the deuterostomes. Sequence divergence analysis between P. rubra sampled in England and Spain indicates cryptic diversity.


Assuntos
Genoma Mitocondrial , Platelmintos/genética , Animais , Teorema de Bayes , Ordem dos Genes , Rearranjo Gênico , Genes Mitocondriais , Genética Populacional , Tamanho do Genoma , Genômica/métodos , Conformação de Ácido Nucleico , Filogenia , Análise de Sequência de DNA , Transcriptoma
5.
PLoS One ; 10(3): e0121369, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25794168

RESUMO

Strigamia maritima (Myriapoda; Chilopoda) is a species from the soil-living order of geophilomorph centipedes. The Geophilomorpha is the most speciose order of centipedes with over a 1000 species described. They are notable for their large number of appendage bearing segments and are being used as a laboratory model to study the embryological process of segmentation within the myriapods. Using a scaffold derived from the recently published genome of Strigamia maritima that contained multiple mitochondrial protein-coding genes, here we report the complete mitochondrial genome of Strigamia, the first from any geophilomorph centipede. The mitochondrial genome of S. maritima is a circular molecule of 14,938 base pairs, within which we could identify the typical mitochondrial genome complement of 13 protein-coding genes and 2 ribosomal RNA genes. Sequences resembling 16 of the 22 transfer RNA genes typical of metazoan mitochondrial genomes could be identified, many of which have clear deviations from the standard 'cloverleaf' secondary structures of tRNA. Phylogenetic trees derived from the concatenated alignment of protein-coding genes of S. maritima and >50 other metazoans were unable to resolve the Myriapoda as monophyletic, but did support a monophyletic group of chilopods: Strigamia was resolved as the sister group of the scolopendromorph Scolopocryptos sp. and these two (Geophilomorpha and Scolopendromorpha), along with the Lithobiomorpha, formed a monophyletic group the Pleurostigmomorpha. Gene order within the S. maritima mitochondrial genome is unique compared to any other arthropod or metazoan mitochondrial genome to which it has been compared. The highly unusual organisation of the mitochondrial genome of Strigamia maritima is in striking contrast with the conservatively evolving nuclear genome: sampling of more members of this order of centipedes will be required to see whether this unusual organization is typical of the Geophilomorpha or results from a more recent reorganisation in the lineage leading to Strigamia.


Assuntos
Artrópodes/genética , Genoma Mitocondrial , Animais , Teorema de Bayes , Códon/genética , Ordem dos Genes , Funções Verossimilhança , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fases de Leitura Aberta/genética , Filogenia , RNA de Transferência/química , RNA de Transferência/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA