Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 7(39): eabf5073, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34550735

RESUMO

The COVID-19 pandemic resulted in extraordinary declines in human mobility, which, in turn, may affect wildlife. Using records of more than 4.3 million birds observed by volunteers from March to May 2017­2020 across Canada and the United States, we found that counts of 66 (80%) of 82 focal bird species changed in pandemic-altered areas, usually increasing in comparison to prepandemic abundances in urban habitat, near major roads and airports, and in counties where lockdowns were more pronounced or occurred at the same time as peak bird migration. Our results indicate that human activity affects many of North America's birds and suggest that we could make urban spaces more attractive to birds by reducing traffic and mitigating the disturbance from human transportation after we emerge from the pandemic.

2.
Oecologia ; 164(1): 265-75, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20372929

RESUMO

Partially migratory populations, where one portion of a population conducts seasonal migrations (migrants) while the other remains on a single range (residents), are common in ungulates. Studies that assess trade-offs between migratory strategies typically compare the amount of predation risk and forage resources migrants and residents are exposed to only while on separate ranges and assume both groups intermix completely while on sympatric ranges. Here we provide one of the first tests of this assumption by comparing the amount of overlap between home ranges of GPS-collared migrant and resident elk and fine-scale exposure to wolf predation risk and forage biomass at telemetry locations on a sympatric winter range in west-central Alberta, Canada. Overlap between migrant and resident home ranges increased throughout the winter, and both groups were generally intermixed and exposed to equal forage biomass. During the day, both migrants and residents avoided predation risk by remaining in areas far from timber with high human activity, which wolves avoided. However, at night wolves moved onto the grasslands close to humans and away from timber. Resident elk were consistently closer to areas of human activity and further from timber than migrants, possibly because of a habituation to humans. As a result, resident elk were exposed to higher night-time predation risk than migrants. Our study does not support the assumption that migrant and resident elk are exposed to equal predation risk on their sympatric range when human presence alters predation risk dynamics and habituation to humans is unequal between migratory strategies.


Assuntos
Migração Animal , Cervos/psicologia , Ecossistema , Alberta , Animais , Humanos , Comportamento Predatório , Estações do Ano , Lobos/psicologia
3.
PLoS One ; 9(7): e101495, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24983471

RESUMO

Climate change is occurring more rapidly in the Arctic than other places in the world, which is likely to alter the distribution and abundance of migratory birds breeding there. A warming climate can provide benefits to birds by decreasing spring snow cover, but increases in the frequency of summer rainstorms, another product of climate change, may reduce foraging opportunities for insectivorous birds. Cyclic lemming populations in the Arctic also influence bird abundance because Arctic foxes begin consuming bird eggs when lemmings decline. The complex interaction between summer temperature, precipitation, and the lemming cycle hinder our ability to predict how Arctic-breeding birds will respond to climate change. The main objective of this study was to investigate the relationship between annual variation in weather, spring snow cover, lemming abundance and spatiotemporal variation in the abundance of multiple avian guilds in a tundra ecosystem in central Nunavut, Canada: songbirds, shorebirds, gulls, loons, and geese. We spatially stratified our study area based on vegetation productivity, terrain ruggedness, and freshwater abundance, and conducted distance sampling to estimate strata-specific densities of each guild during the summers of 2010-2012. We also monitored temperature, rainfall, spring snow cover, and lemming abundance each year. Spatial variation in bird abundance matched what was expected based on previous ecological knowledge, but weather and lemming abundance also significantly influenced the abundance of some guilds. In particular, songbirds were less abundant during the cool, wet summer with moderate snow cover, and shorebirds and gulls declined with lemming abundance. The abundance of geese did not vary over time, possibly because benefits created by moderate spring snow cover were offset by increased fox predation when lemmings were scarce. Our study provides an example of a simple way to monitor the correlation between weather, spring snow cover, lemming abundance, and spatiotemporal variations in Arctic-breeding birds.


Assuntos
Arvicolinae/fisiologia , Aves/fisiologia , Estações do Ano , Tundra , Animais , Regiões Árticas , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA