RESUMO
Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks' horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial "cryptic" lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.
Assuntos
Tubarões , Animais , Espécies em Perigo de Extinção , Plâncton , NaviosRESUMO
Responses of organisms to climate warming are variable and complex. Effects on species distributions are already evident and mean global surface ocean temperatures are likely to warm by up to 4.1 °C by 2100, substantially impacting the physiology and distributions of ectotherms. The largest marine ectotherm, the whale shark Rhincodon typus, broadly prefers sea surface temperatures (SST) ranging from 23 to 30 °C. Whole-species distribution models have projected a poleward range shift under future scenarios of climate change, but these models do not consider intraspecific variation or phenotypic plasticity in thermal limits when modelling species responses, and the impact of climate warming on the energetic requirements of whale sharks is unknown. Using a dataset of 111 whale shark movement tracks from aggregation sites in five countries across the Indian Ocean and the latest Earth-system modelling produced from Coupled Model Intercomparison Project Phase 6 for the Intergovernmental Panel on Climate Change, we examined how SST and total zooplankton biomass, their main food source, may change in the future, and what this means for the energetic balance and extent of suitable habitat for whale sharks. Earth System Models, under three Shared Socioeconomic Pathways (SSPs; SSP1-2.6, SSP3-7.0 and SSP5-8.5), project that by 2100 mean SST in four regions where whale shark aggregations are found will increase by up to 4.9 °C relative to the present, while zooplankton biomass will decrease. This reduction in zooplankton is projected to be accompanied by an increase in the energetic requirements of whale sharks because warmer water temperatures will increase their metabolic rate. We found marked differences in projected changes in the extent of suitable habitat when comparing a whole-species distribution model to one including regional variation. This suggests that the conventional approach of combining data from different regions within a species' distribution could underestimate the amount of local adaptation in populations, although parameterising local models could also suffer from having insufficient data and lead to model mis-specification or highly uncertain estimates. Our study highlights the need for further research into whale shark thermal tolerances and energetics, the complexities involved in projecting species responses to climate change, and the potential importance of considering intraspecific variation when building species distribution models.
Assuntos
Mudança Climática , Ecossistema , Tubarões , Animais , Tubarões/fisiologia , Oceano Índico , TemperaturaRESUMO
The rehabilitation of wildlife can contribute directly to the conservation of threatened species by helping to maintain wild populations. This study focused on determining the post-rehabilitation survival and spatial ecology of sea turtles and on comparing the movements of individuals with flipper amputations (amputees) to non-amputee animals. Our aims were to assess whether rehabilitated sea turtles survive after release, to compare and contrast the movement characteristics of the different species of sea turtles we tracked, and to examine whether amputees and non-amputees within species behaved similarly post-release. Twenty-six rehabilitated sea turtles from four species, including hawksbill Eretmochelys imbricata (n = 12), loggerhead Caretta caretta (n = 11), green Chelonia mydas (n = 2), and olive ridley Lepidochelys olivacea (n = 1) sea turtles from the United Arab Emirates were fitted with satellite tags before release. Rehabilitation times ranged from 89 to 817 days (mean 353 ± 237 days). Post-release movements and survival were monitored for 8 to 387 days (mean 155 ± 95 days) through satellite tracking. Tag data suggested that three tracked sea turtles died within four days of release, one after 27 days, and one after 192 days from what are thought to be anthropogenic factors unrelated to their pre-rehabilitation ailments. We then compared habitat use and movement characteristics among the different sea turtle species. Although half of all turtles crossed one or more international boundaries, dispersal varied among species. Loggerhead turtles had a high dispersal, with 80% crossing an international boundary, while hawksbill turtles displayed higher post-release residency, with 66% remaining within UAE territorial waters. Amputee turtles moved similarly to non-amputee animals of the same species. Loggerhead turtles travelled faster (mean ± sd = 15.3 ± 8 km/day) than hawksbill turtles (9 ± 7 km/day). Both amputee and non-amputee sea turtles within a species moved similarly. Our tracking results highlight that rehabilitated sea turtles, including amputees, can successfully survive in the wild following release for up to our ~one-year monitoring time therefore supporting the suitability for release of sea turtles that have recovered from major injuries such as amputations. However, more broadly, the high mortality from anthropogenic factors in the Arabian Gulf region is clearly a serious issue and conservation challenge.
Assuntos
Conservação dos Recursos Naturais , Tartarugas , Animais , Feminino , Comunicações Via SatéliteRESUMO
The whale shark Rhincodon typus is an endangered, highly migratory species with a wide, albeit patchy, distribution through tropical oceans. Ten aerial survey flights along the southern Mozambican coast, conducted between 2004-2008, documented a relatively high density of whale sharks along a 200 km stretch of the Inhambane Province, with a pronounced hotspot adjacent to Praia do Tofo. To examine the residency and movement of whale sharks in coastal areas around Praia do Tofo, where they may be more susceptible to gill net entanglement, we tagged 15 juveniles with SPOT5 satellite tags and tracked them for 2-88 days (mean = 27 days) as they dispersed from this area. Sharks travelled between 10 and 2,737 km (mean = 738 km) at a mean horizontal speed of 28 ± 17.1 SD km day-1. While several individuals left shelf waters and travelled across international boundaries, most sharks stayed in Mozambican coastal waters over the tracking period. We tested for whale shark habitat preferences, using sea surface temperature, chlorophyll-a concentration and water depth as variables, by computing 100 random model tracks for each real shark based on their empirical movement characteristics. Whale sharks spent significantly more time in cooler, shallower water with higher chlorophyll-a concentrations than model sharks, suggesting that feeding in productive coastal waters is an important driver of their movements. To investigate what this coastal habitat choice means for their conservation in Mozambique, we mapped gill nets during two dedicated aerial surveys along the Inhambane coast and counted gill nets in 1,323 boat-based surveys near Praia do Tofo. Our results show that, while whale sharks are capable of long-distance oceanic movements, they can spend a disproportionate amount of time in specific areas, such as along the southern Mozambique coast. The increasing use of drifting gill nets in this coastal hotspot for whale sharks is likely to be a threat to regional populations of this iconic species.
RESUMO
We collected movement data for eight rehabilitated and satellite-tagged green sea turtles Chelonia mydas released off the United Arab Emirates between 2005 and 2013. Rehabilitation periods ranged from 96 to 1353 days (mean = 437 ± 399 days). Seven of the eight tagged turtles survived after release; one turtle was killed by what is thought to be a post-release spear gun wound. The majority of turtles (63%) used shallow-water core habitats and established home ranges between Dubai and Abu Dhabi, the same area in which they had originally washed ashore prior to rescue. Four turtles made movements across international boundaries, highlighting that regional cooperation is necessary for the management of the species. One turtle swam from Fujairah to the Andaman Sea, a total distance of 8283 km, which is the longest published track of a green turtle. This study demonstrates that sea turtles can be successfully reintroduced into the wild after sustaining serious injury and undergoing prolonged periods of intense rehabilitation.
Assuntos
Migração Animal/fisiologia , Comunicações Via Satélite , Tartarugas/fisiologia , Animais , Ecossistema , Comportamento de Retorno ao Território Vital , Estações do Ano , Especificidade da Espécie , Temperatura , Fatores de Tempo , Emirados Árabes UnidosRESUMO
The Arabian Gulf is the warmest sea in the world and is host to a globally significant population of the whale shark Rhincodon typus. To investigate regional whale shark behaviour and movements, 59 satellite-linked tags were deployed on whale sharks in the Al Shaheen area off Qatar from 2011-14. Four different models of tag were used throughout the study, each model able to collect differing data or quantities of data. Retention varied from one to 227 days. While all tagged sharks crossed international maritime boundaries, they typically stayed within the Arabian Gulf. Only nine sharks dispersed through the narrow Strait of Hormuz into the Gulf of Oman. Most sharks stayed close to known or suspected feeding aggregation sites over summer months, but dispersed throughout the Arabian Gulf in winter. Sharks rarely ventured into shallow areas (<40 m depth). A single, presumably pregnant female shark was the sole animal to disperse a long distance, crossing five international maritime boundaries in 37 days before the tag detached at a distance of approximately 2644 km from the tagging site, close to the Yemeni-Somali border. No clear space-use differentiation was evident between years, for sharks of different sizes, or between sexes. Whale sharks spent the most time (~66%) in temperatures of 24-30°C and in shallow waters <100 m depth (~60%). Sharks spent relatively more time in cooler (X2 = 121.692; p<0.05) and deeper (X2 = 46.402; p<0.05) water at night. Sharks rarely made dives deeper than 100 m, reflecting the bathymetric constraints of the Gulf environment. Kernel density analysis demonstrated that the tagging site at Al Shaheen was the regional hotspot for these sharks, and revealed a probable secondary aggregation site for whale sharks in nearby Saudi Arabian waters. Analysis of visual re-sightings data of tagged sharks revealed that 58% of tagged individuals were re-sighted back in Al Shaheen over the course of this study, with 40% recorded back at Al Shaheen in the year following their initial identification. Two sharks were confirmed to return to Al Shaheen in each of the five years of study.
Assuntos
Migração Animal , Temperatura Alta , Tubarões , Animais , Comportamento Animal , Ecossistema , Feminino , Masculino , Estações do Ano , AstronaveRESUMO
Data on the occurrence of whale sharks, Rhincodon typus, in the Arabian Gulf and Gulf of Oman were collected by dedicated boat surveys and via a public-sightings scheme during the period from 2011 to 2014. A total of 422 individual whale sharks were photo-identified from the Arabian Gulf and the northern Gulf of Oman during that period. The majority of sharks (81%, n = 341) were encountered at the Al Shaheen area of Qatar, 90 km off the coast, with the Musandam region of Oman a secondary area of interest. At Al Shaheen, there were significantly more male sharks (n = 171) than females (n = 78; X2 = 17.52, P < 0.05). Mean estimated total length (TL) for sharks was 6.90 m ± 1.24 (median = 7 m; n = 296). Males (7.25 m ± 1.34; median = 8 m, n = 171) were larger than females (6.44 m ±1.09; median = 7 m, n = 78; Mann-Whitney U test, p < 0.01). Of the male sharks assessed for maturity 63% were mature (n = 81), with 50% attaining maturity by 7.29 m and 100% by 9.00 m. Two female sharks of >9 m individuals were visually assessed as pregnant. Connectivity among sharks sighted in Qatari, Omani and UAE waters was confirmed by individual spot pattern matches. A total of 13 identified sharks were re-sighted at locations other than that at which they were first sighted, including movements into and out of the Arabian Gulf through the Strait of Hormuz. Maximum likelihood techniques were used to model an estimated combined population for the Arabian Gulf and Gulf of Oman of 2837 sharks ± 1243.91 S.E. (95% C.I. 1720-6295). The Al Shaheen aggregation is thus the first site described as being dominated by mature males while the free-swimming pregnant females are the first reported from the Indian Ocean.
Assuntos
Distribuição Animal/fisiologia , Migração Animal/fisiologia , Tubarões/fisiologia , Animais , Ecossistema , Feminino , Oceano Índico , Masculino , Omã , Densidade DemográficaRESUMO
Whale sharks, Rhincodon typus, are known to aggregate to feed in a small number of locations in tropical and subtropical waters. Here we document a newly discovered major aggregation site for whale sharks within the Al Shaheen oil field, 90 km off the coast of Qatar in the Arabian Gulf. Whale sharks were observed between April and September, with peak numbers observed between May and August. Density estimates of up to 100 sharks within an area of 1 km(2) were recorded. Sharks ranged between four and eight metres' estimated total length (mean 6.92 ± 1.53 m). Most animals observed were actively feeding on surface zooplankton, consisting primarily of mackerel tuna, Euthynnus affinis, eggs.