RESUMO
A palladium-catalyzed (3 + 2) cycloaddition between 5-vinyloxazolidine-2,4-diones (VOxD) and (thio)isocyanates is described. Under optimized conditions, an array of (thio)hydantoins was readily prepared, and an enantioselective version of this transformation was then studied. To illustrate the importance of this method, a concise synthesis of two bioactive compounds, nirvanol and mephenytoin, was carried out. This work emphasizes the synthetic potential of VOxD as useful precursors of zwitterionic aza-π-allylpalladiumII intermediates.
RESUMO
Despite the importance of the 4-imidazolidinone scaffold in bioactive compounds or organocatalysts, methodologies to access these nitrogenated heterocycles remain scarce. This manuscript describes a novel preparation of 4-imidazolidinones via a diastereo- and enantioselective (3 + 2) cycloaddition between 5-vinyloxazolidine-2,4-diones (VOxD) and electrophilic imines under palladium catalysis. This work supports the synthetic potential of VOxD as a promising equivalent of the C-C(âO)-N synthon.
RESUMO
In the atmosphere pointlike sources are surrounded by an aureole due to molecular and aerosol scattering. UV phase functions of haze droplets have a very important forward peak that limits signal angular spreading in relation to the clear atmosphere case where Rayleigh scattering predominates. This specific property can be exploited using solar blind UV source detection as an aircraft landing aid under foggy conditions. Two methods have been used to compute UV light propagation, based on the Monte Carlo technique and a semi-empirical approach. Results obtained after addition of three types of sensor and UV runway light models show that an important improvement in landing conditions during foggy weather could be achieved by use of a solar blind UV intensified CCD camera with two stages of microchannel plates.
RESUMO
Solar scattering on oriented cirrus crystals near the specular reflection direction is modeled using a mix method combining geometric optics and diffraction effects at three wavelengths in the visible and infrared domains. Different potential sources of phase function broadening around the specular direction, such as multiple scattering, solar disk, or tilt effects, are studied by means of a Monte Carlo method. The radiance detected by an airborne sensor located a few kilometers above the cirrus cloud and pointing in the specular scattering direction is calculated at four solar zenith angles showing a dramatic increase of the signal in relation to the usual assumption of random crystal orientation.
RESUMO
Light scattering in the atmosphere by particles and molecules gives rise to an aureole surrounding the source image that tends to reduce the contrast of the source with respect to the background. However, UV scattering phase functions of the haze droplets present a very important forward peak. The spreading of a detected signal in the UV is not as important as in the case of a clear atmosphere where Rayleigh scattering predominates. This physical property has to be taken into account to evaluate the potential of UV radiation as an aircraft landing aid under low visibility conditions. Different results characterizing UV runway lights, simulations of UV radiation propagation in the atmosphere, and the use of a simple detection algorithm applied to one particular sensor are presented.
RESUMO
In the atmosphere, pointlike sources are surrounded by aureoles because of molecular and aerosol scattering. In various meteorological conditions, this variance field can be a nonnegligible part of the signal detected by a large-field-of-view sensor. A model based on a Monte Carlo technique has been developed to simulate the propagation of radiation coming from a UV point source. The model was validated with an experimental comparison by a photon-counting technique, and good agreement between experimental and theoretical results was found.
RESUMO
The quality of the image produced by an outdoor optical system is affected by the presence of atmospheric aerosols between object and receiver. The properties of the point-spread function that result from aerosol particles were calculated by a new Monte Carlo code called MEDIA (an acronym for Modélisation des Effets de Diffusion Inhérents à l'Atmosphère). The influence of the scattering phase function's angular dependence on the irradiance of the focal plane of a detector was studied. Calculations were performed by use of Mie theory and of the Henyey-Greenstein formulation for the same asymmetry parameter and various detector optical characteristics and atmospheric conditions. Major variations were observed for strong forward-peaked scattering phase functions and a large detector field of view.