Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 574(7778): 382-385, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31499510

RESUMO

Supersolids are exotic materials combining the frictionless flow of a superfluid with the crystal-like periodic density modulation of a solid. The supersolid phase of matter was predicted 50 years ago1-3 for solid helium4-8. Ultracold quantum gases have recently been made to exhibit periodic order typical of a crystal, owing to various types of controllable interaction9-13. A crucial feature of a D-dimensional supersolid is the occurrence of D + 1 gapless excitations, reflecting the Goldstone modes associated with the spontaneous breaking of two continuous symmetries: the breaking of phase invariance, corresponding to the locking of the phase of the atomic wave functions at the origin of superfluid phenomena, and the breaking of translational invariance due to the lattice structure of the system. Such modes have been the object of intense theoretical investigations1,14-18, but they have not yet been observed experimentally. Here we demonstrate supersolid symmetry breaking through the appearance of two distinct compressional oscillation modes in a harmonically trapped dipolar Bose-Einstein condensate, reflecting the gapless Goldstone excitations of the homogeneous system. We observe that the higher-frequency mode is associated with an oscillation of the periodicity of the emergent lattice and the lower-frequency mode characterizes the superfluid oscillations. This work also suggests the presence of two separate quantum phase transitions between the superfluid, supersolid and solid-like configurations.

2.
Phys Rev Lett ; 130(22): 226003, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37327429

RESUMO

At zero temperature, a Galilean-invariant Bose fluid is expected to be fully superfluid. Here we investigate theoretically and experimentally the quenching of the superfluid density of a dilute Bose-Einstein condensate due to the breaking of translational (and thus Galilean) invariance by an external 1D periodic potential. Both Leggett's bound fixed by the knowledge of the total density and the anisotropy of the sound velocity provide a consistent determination of the superfluid fraction. The use of a large-period lattice emphasizes the important role of two-body interactions on superfluidity.


Assuntos
Anisotropia , Temperatura
3.
Phys Rev Lett ; 124(4): 045702, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32058751

RESUMO

Distinctive features of supersolids show up in their rotational properties. We calculate the moment of inertia of a harmonically trapped dipolar Bose-Einstein condensed gas as a function of the tunable scattering length parameter, providing the transition from the (fully) superfluid to the supersolid phase and eventually to an incoherent crystal of self-bound droplets. The transition from the superfluid to the supersolid phase is characterized by a jump in the moment of inertia, revealing its first order nature. In the case of elongated trapping in the plane of rotation, we show that the moment of inertia determines the value of the frequency of the scissors mode, which is significantly affected by the reduction of superfluidity in the supersolid phase. The case of an in-plane isotropic trapping is instead well suited to study the formation of quantized vortices, which are shown to be characterized, in the supersolid phase, by a sizeable deformed core, caused by the presence of the surrounding density peaks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA