Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Neurobiol Dis ; 153: 105312, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33636387

RESUMO

Gene-environment interaction is implicated in the majority of idiopathic Parkinson's disease (PD) risk, and some of the most widespread environmental contaminants are selectively toxic to dopaminergic neurons. Pesticides have long been connected to PD incidence, however, it has become increasingly apparent that other industrial byproducts likely influence neurodegeneration. For example, organic solvents, which are used in chemical, machining, and dry-cleaning industries, are of growing concern, as decades of solvent use and their effluence into the environment has contaminated much of the world's groundwater and soil. Like some pesticides, certain organic solvents, such as the chlorinated halocarbon trichloroethylene (TCE), are mitochondrial toxicants, which are collectively implicated in the pathogenesis of dopaminergic neurodegeneration. Recently, we hypothesized a possible gene-environment interaction may occur between environmental mitochondrial toxicants and the protein kinase LRRK2, mutations of which are the most common genetic cause of familial and sporadic PD. In addition, emerging data suggests that elevated wildtype LRRK2 kinase activity also contributes to the pathogenesis of idiopathic PD. To this end, we investigated whether chronic, systemic TCE exposure (200 mg/kg) in aged rats produced wildtype LRRK2 activation and caused nigrostriatal dopaminergic dysfunction. Interestingly, we found that TCE not only induced LRRK2 kinase activity in the brain, but produced a significant dopaminergic lesion in the nigrostriatal tract, elevated oxidative stress, and caused endolysosomal dysfunction and α-synuclein accumulation. Together, these data suggest that TCE-induced LRRK2 kinase activity contributed to the selective toxicity of dopaminergic neurons. We conclude that gene-environment interactions between certain industrial contaminants and LRRK2 likely influence PD risk.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Transtornos Parkinsonianos/metabolismo , Solventes/toxicidade , Substância Negra/efeitos dos fármacos , Tricloroetileno/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Interação Gene-Ambiente , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Atividade Motora/efeitos dos fármacos , Neostriado/metabolismo , Neostriado/patologia , Teste de Campo Aberto , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/patologia , Agregados Proteicos/efeitos dos fármacos , Ratos , Substância Negra/metabolismo , Substância Negra/patologia , alfa-Sinucleína/metabolismo
2.
Neurobiol Dis ; 134: 104626, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31618685

RESUMO

LRRK2 has been implicated in endolysosomal function and likely plays a central role in idiopathic Parkinson's disease (iPD). In iPD, dopaminergic neurons within the substantia nigra are characterized by increased LRRK2 kinase activity, endolysosomal deficits, and accumulation of autophagic vesicles with incompletely degraded substrates, including α-synuclein. Although LRRK2 has been implicated in endolysosomal and autophagic function, it remains unclear whether inhibition of LRRK2 kinase activity can prevent endolysosomal deficits or reduce dopaminergic neurodegeneration. In this study, we characterized the endolysosomal and autophagic defects in surviving dopaminergic neurons of iPD patient brain tissue. We next showed that these defects could be reproduced reliably in vivo using the rotenone model of iPD. Results suggested that there was impaired endosomal maturation, resulting in lysosomal dysfunction and deficits in protein degradation. A highly selective, brain-penetrant LRRK2 kinase inhibitor not only improved apparent endosomal maturation and lysosomal function, but also prevented rotenone-induced neurodegeneration in vivo. The fact that a LRRK2 kinase inhibitor was capable of preventing the neuropathological and endolysosomal abnormalities observed in human iPD suggests that LRRK2 inhibitors may have broad therapeutic utility in iPD, not only in those who carry a LRRK2 mutation.


Assuntos
Neurônios Dopaminérgicos/patologia , Endossomos/patologia , Inibidores Enzimáticos/farmacologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Lisossomos/patologia , Doença de Parkinson , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Humanos , Lisossomos/efeitos dos fármacos , Masculino , Ratos , Substância Negra/efeitos dos fármacos , Substância Negra/patologia
3.
Neurobiol Dis ; 109(Pt B): 249-257, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28400134

RESUMO

Parkinson's disease (PD) is a complex, chronic and progressive neurodegenerative disease. While the etiology of PD is likely multifactorial, the protein α-synuclein is a central component to the pathogenesis of the disease. However, the mechanism by which α-synuclein causes toxicity and contributes to neuronal death remains unclear. Mitochondrial dysfunction is also widely considered to play a major role in the underlying mechanisms contributing to neurodegeneration in PD. This review discusses evidence for the neuropathological role for α-synuclein in the dysfunction of dopamine neurons in PD. We also discuss insights into the structure, localization, and cellular roles for α-synuclein that may influence its aggregation properties, ultimately impacting its pathogenicity, role in lysosomal dysfunction and activation of the neuroimmune response. We further highlight recent evidence linking α-synuclein and mitochondrial dysfunction in neurodegeneration. Identifying the underlying mechanisms responsible for this bi-directional relationship between α-synuclein and mitochondrial dysfunction may provide new insights into the pathophysiology of PD.


Assuntos
Inflamação/metabolismo , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Humanos , Inflamação/patologia , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , alfa-Sinucleína/genética
4.
Neurobiol Dis ; 115: 101-114, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29649621

RESUMO

DJ-1 is a redox-sensitive protein with several putative functions important in mitochondrial physiology, protein transcription, proteasome regulation, and chaperone activity. High levels of DJ-1 immunoreactivity are reported in astrocytes surrounding pathology associated with idiopathic Parkinson's disease, possibly reflecting the glial response to oxidative damage. Previous studies showed that astrocytic over-expression of DJ-1 in vitro prevented oxidative stress and mitochondrial dysfunction in primary neurons. Based on these observations, we developed a pseudotyped lentiviral gene transfer vector with specific tropism for CNS astrocytes in vivo to overexpress human DJ-1 protein in astroglial cells. Following vector delivery to the substantia nigra and striatum of adult Lewis rats, the DJ-1 transgene was expressed robustly and specifically within astrocytes. There was no observable transgene expression in neurons or other glial cell types. Three weeks after vector infusion, animals were exposed to rotenone to induce Parkinson's disease-like pathology, including loss of dopaminergic neurons, accumulation of endogenous α-synuclein, and neuroinflammation. Animals over-expressing hDJ-1 in astrocytes were protected from rotenone-induced neurodegeneration, and displayed a marked reduction in neuronal oxidative stress and microglial activation. In addition, α-synuclein accumulation and phosphorylation were decreased within substantia nigra dopaminergic neurons in DJ-1-transduced animals, and expression of LAMP-2A, a marker of chaperone mediated autophagy, was increased. Together, these data indicate that astrocyte-specific overexpression of hDJ-1 protects neighboring neurons against multiple pathologic features of Parkinson's disease and provides the first direct evidence in vivo of a cell non-autonomous neuroprotective function of astroglial DJ-1.


Assuntos
Astrócitos/metabolismo , Inseticidas/toxicidade , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/prevenção & controle , Proteína Desglicase DJ-1/biossíntese , Rotenona/toxicidade , Animais , Astrócitos/efeitos dos fármacos , Expressão Gênica , Humanos , Masculino , Transtornos Parkinsonianos/induzido quimicamente , Proteína Desglicase DJ-1/genética , Ratos , Ratos Endogâmicos Lew
5.
Hum Mol Genet ; 23(17): 4510-27, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24728190

RESUMO

A long-term goal of modeling Huntington's disease (HD) is to recapitulate the cardinal features of the disease in mice that express both mutant and wild-type (WT) huntingtin (Htt), as HD commonly manifests as a heterozygous condition in humans, and loss of WT Htt is associated with loss-of-function. In a new heterozygous Q175 knock-in (KI) mouse model, we performed an extensive evaluation of motor and cognitive functional deficits, neuropathological and biochemical changes and levels of proteins involved in synaptic function, the cytoskeleton and axonal transport, at 1-16 months of age. Motor deficits were apparent at 6 months of age in Q175 KI mice and at that time, postmortem striatal gamma-aminobutyric acid (GABA) levels were elevated and mutant Htt inclusions were present throughout the brain. From 6 months of age, levels of proteins associated with synaptic function, including SNAP-25, Rab3A and PSD-95, and with axonal transport and microtubules, including KIF3A, dynein and dynactin, were altered in the striatum, motor cortex, prefrontal cortex and hippocampus of Q175 KI mice, compared with WT levels. At 12-16 months of age, Q175 KI mice displayed motor and cognitive deficits, which were paralleled at postmortem by striatal atrophy, cortical thinning, degeneration of medium spiny neurons, dense mutant Htt inclusion formation, decreased striatal dopamine levels and loss of striatal brain-derived neurotrophic factor (BDNF). Data from this study indicate that the heterozygous Q175 KI mouse represents a realistic model for HD and also provides new insights into the specific and progressive synaptic, cytoskeletal and axonal transport protein abnormalities that may accompany the disease.


Assuntos
Transporte Axonal , Comportamento Animal , Doença de Huntington/genética , Doença de Huntington/patologia , Sinapses/metabolismo , Envelhecimento/patologia , Animais , Atrofia/genética , Atrofia/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Heterozigoto , Corpos de Inclusão/metabolismo , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Neostriado/metabolismo , Neostriado/patologia , Neurotransmissores/metabolismo , Receptor trkB/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
6.
Neurobiol Dis ; 82: 495-503, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26392287

RESUMO

Diminished lysosomal function can lead to abnormal cellular accumulation of specific proteins, including α-synuclein, contributing to disease pathogenesis of vulnerable neurons in Parkinson's disease (PD) and related α-synucleinopathies. GBA1 encodes for the lysosomal hydrolase glucocerebrosidase (GCase), and mutations in GBA1 are a prominent genetic risk factor for PD. Previous studies showed that in sporadic PD, and in normal aging, GCase brain activity is reduced and levels of corresponding glycolipid substrates are increased. The present study tested whether increasing GCase through AAV-GBA1 intra-cerebral gene delivery in two PD rodent models would reduce the accumulation of α-synuclein and protect midbrain dopamine neurons from α-synuclein-mediated neuronal damage. In the first model, transgenic mice overexpressing wildtype α-synuclein throughout the brain (ASO mice) were used, and in the second model, a rat model of selective dopamine neuron degeneration was induced by AAV-A53T mutant α-synuclein. In ASO mice, intra-cerebral AAV-GBA1 injections into several brain regions increased GCase activity and reduced the accumulation of α-synuclein in the substantia nigra and striatum. In rats, co-injection of AAV-GBA1 with AAV-A53T α-synuclein into the substantia nigra prevented α-synuclein-mediated degeneration of nigrostriatal dopamine neurons by 6 months. These neuroprotective effects were associated with altered protein expression of markers of autophagy. These experiments demonstrate, for the first time, the neuroprotective effects of increasing GCase against dopaminergic neuron degeneration, and support the development of therapeutics targeting GCase or other lysosomal genes to improve neuronal handling of α-synuclein.


Assuntos
Neurônios Dopaminérgicos/enzimologia , Terapia Genética/métodos , Glucosilceramidase/genética , Mesencéfalo/enzimologia , Doenças Neurodegenerativas/terapia , alfa-Sinucleína/metabolismo , Animais , Dependovirus/genética , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Vetores Genéticos , Glucosilceramidase/metabolismo , Humanos , Masculino , Mesencéfalo/patologia , Camundongos Transgênicos , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/patologia , Ratos Sprague-Dawley , alfa-Sinucleína/genética
7.
Brain Sci ; 14(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38391726

RESUMO

Animal models have been used to gain pathophysiologic insights into Parkinson's disease (PD) and aid in the translational efforts of interventions with therapeutic potential in human clinical trials. However, no disease-modifying therapy for PD has successfully emerged from model predictions. These translational disappointments warrant a reappraisal of the types of preclinical questions asked of animal models. Besides the limitations of experimental designs, the one-size convergence and oversimplification yielded by a model cannot recapitulate the molecular diversity within and between PD patients. Here, we compare the strengths and pitfalls of different models, review the discrepancies between animal and human data on similar pathologic and molecular mechanisms, assess the potential of organoids as novel modeling tools, and evaluate the types of questions for which models can guide and misguide. We propose that animal models may be of greatest utility in the evaluation of molecular mechanisms, neural pathways, drug toxicity, and safety but can be unreliable or misleading when used to generate pathophysiologic hypotheses or predict therapeutic efficacy for compounds with potential neuroprotective effects in humans. To enhance the translational disease-modification potential, the modeling must reflect the biology not of a diseased population but of subtypes of diseased humans to distinguish What data are relevant and to Whom.

8.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915558

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) that increase its kinase activity are strongly linked to genetic forms of Parkinson's disease (PD). However, the regulation of endogenous wild-type (WT) LRRK2 kinase activity remains poorly understood, despite its frequent elevation in idiopathic PD (iPD) patients. Various stressors such as mitochondrial dysfunction, lysosomal dyshomeostasis, or vesicle trafficking deficits can activate WT LRRK2 kinase, but the specific molecular mechanisms are not fully understood. We found that the production of 4-hydroxynonenal (4-HNE), a lipid hydroperoxidation end-product, is a common biochemical response to these diverse stimuli. 4-HNE forms post-translational adducts with Cys2024 and Cys2025 in the kinase activation loop of WT LRRK2, significantly increasing its kinase activity. Additionally, we discovered that the 4-HNE responsible for regulating LRRK2 is generated by the action of 15-lipoxygenase (15-LO), making 15-LO an upstream regulator of the pathogenic hyperactivation of LRRK2 kinase activity. Pharmacological inhibition or genetic ablation of 15-LO prevents 4-HNE post-translational modification of LRRK2 kinase and its subsequent pathogenic hyperactivation. Therefore, 15-LO inhibitors, or methods to lower 4-HNE levels, or the targeting of Cys2024/2025 could provide new therapeutic strategies to modulate LRRK2 kinase activity and treat PD.

9.
Sci Transl Med ; 16(767): eadl3438, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356746

RESUMO

Oxidative stress has long been implicated in Parkinson's disease (PD) pathogenesis, although the sources and regulation of reactive oxygen species (ROS) production are poorly defined. Pathogenic mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are associated with increased kinase activity and a greater risk of PD. The substrates and downstream consequences of elevated LRRK2 kinase activity are still being elucidated, but overexpression of mutant LRRK2 has been associated with oxidative stress, and antioxidants reportedly mitigate LRRK2 toxicity. Here, using CRISPR-Cas9 gene-edited HEK293 cells, RAW264.7 macrophages, rat primary ventral midbrain cultures, and PD patient-derived lymphoblastoid cells, we found that elevated LRRK2 kinase activity was associated with increased ROS production and lipid peroxidation and that this was blocked by inhibitors of either LRRK2 kinase or NADPH oxidase 2 (NOX2). Oxidative stress induced by the pesticide rotenone was ameliorated by LRRK2 kinase inhibition and was absent in cells devoid of LRRK2. In a rat model of PD induced by rotenone, a LRRK2 kinase inhibitor prevented the lipid peroxidation and NOX2 activation normally seen in nigral dopaminergic neurons in this model. Mechanistically, LRRK2 kinase activity was shown to regulate phosphorylation of serine-345 in the p47phox subunit of NOX2. This, in turn, led to translocation of p47phox from the cytosol to the membrane-associated gp91phox (NOX2) subunit, activation of the NOX2 enzyme complex, and production of ROS. Thus, LRRK2 kinase activity may drive cellular ROS production in PD through the regulation of NOX2 activity.


Assuntos
Modelos Animais de Doenças , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , NADPH Oxidase 2 , Estresse Oxidativo , Doença de Parkinson , Espécies Reativas de Oxigênio , Rotenona , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/genética , Células HEK293 , Estresse Oxidativo/efeitos dos fármacos , Camundongos , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Rotenona/farmacologia , Ratos , Peroxidação de Lipídeos , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Ratos Sprague-Dawley , NADPH Oxidases
10.
Handb Clin Neurol ; 193: 33-51, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36803821

RESUMO

Parkinson's disease (PD) remains one of the most prevalent neurodegenerative disorders. It has become increasingly recognized that PD is not one disease but a constellation of many, with distinct cellular mechanisms driving pathology and neuronal loss in each given subtype. Endolysosomal trafficking and lysosomal degradation are crucial to maintain neuronal homeostasis and vesicular trafficking. It is clear that deficits in endolysosomal signaling data support the existence of an endolysosomal PD subtype. This chapter describes how cellular pathways involved in endolysosomal vesicular trafficking and lysosomal degradation in neurons and immune cells can contribute to PD. Last, as inflammatory processes including phagocytosis and cytokine release are central in glia-neuron interactions, a spotlight on the role of neuroinflammation plays in the pathogenesis of this PD subtype is also explored.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/patologia , Endossomos/metabolismo , Endossomos/patologia , Lisossomos/metabolismo , Lisossomos/patologia , Neurônios/patologia
11.
NPJ Parkinsons Dis ; 9(1): 121, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567894

RESUMO

Individuals with Parkinson's disease (PD) typically receive a diagnosis once they have developed motor symptoms, at which point there is already significant loss of substantia nigra dopamine neurons, α-synuclein accumulation in surviving neurons, and neuroinflammation. Consequently, the point of clinical presentation may be too late to initiate disease-modifying therapy. In contrast to this clinical reality, animal models often involve acute neurodegeneration and potential therapies are tested concurrently or shortly after the pathogenic insult has begun rather than later when diagnostic clinical symptoms emerge. Therefore, we sought to develop a model that reflects the clinical situation more accurately. Middle-aged rats (7-9 months-old) received a single daily intraperitoneal injection of rotenone for 5 consecutive days and were observed over the next 8-9 months. Rotenone-treated rats showed transient motor slowing and postural instability during exposure but recovered within 9 days of rotenone cessation. Rats remained without behavioral deficits for 3-4 months, then developed progressive motor abnormalities over the ensuing months. As motor abnormalities began to emerge 3 months after rotenone exposure, there was significant loss of nigral dopaminergic neurons and significant microglial activation. There was delayed accumulation of α-synuclein in neurons of the substantia nigra and frontal cortex, which was maximal at 9 months post-rotenone. In summary, a brief temporally-remote exposure to rotenone causes delayed and progressive behavioral and neuropathological changes similar to Parkinson's disease. This model mimics the human clinical situation, in which pathogenesis is well-established by the time diagnostic motor deficits appear. As such, this model may provide a more relevant experimental system in which to test disease-modifying therapeutics.

12.
Trends Neurosci ; 45(3): 224-236, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34991886

RESUMO

The etiology of idiopathic Parkinson's disease (iPD) is multifactorial, and both genetics and environmental exposures are risk factors. While mutations in leucine-rich repeat kinase-2 (LRRK2) that are associated with increased kinase activity are the most common cause of autosomal dominant PD, the role of LRRK2 in iPD, independent of mutations, remains uncertain. In this review, we discuss how the architecture of LRRK2 influences kinase activation and how enhanced LRRK2 substrate phosphorylation might contribute to pathogenesis. We describe how oxidative stress and endolysosomal dysfunction, both of which occur in iPD, can activate non-mutated LRRK2 to a similar degree as pathogenic mutations. Similarly, environmental toxicants that are linked epidemiologically to iPD risk can also activate LRRK2. In aggregate, current evidence suggests an important role for LRRK2 in iPD.


Assuntos
Doença de Parkinson , Endossomos/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Mutação/genética , Fosforilação
13.
NPJ Parkinsons Dis ; 6(1): 38, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293540

RESUMO

Dopaminergic neurons of the substantia nigra are selectively vulnerable to mitochondrial dysfunction, which is hypothesized to be an early and fundamental pathogenic mechanism in Parkinson's disease (PD). Mitochondrial function depends on the successful import of nuclear-encoded proteins, many of which are transported through the TOM20-TOM22 outer mitochondrial membrane import receptor machinery. Recent data suggests that post-translational modifications of α-synuclein promote its interaction with TOM20 at the outer mitochondrial membrane and thereby inhibit normal protein import, leading to dysfunction, and death of dopaminergic neurons. As such, preservation of mitochondrial import in the face of α-synuclein accumulation might be a strategy to prevent dopaminergic neurodegeneration, however, this is difficult to assess using current in vivo models of PD. To this end, we established an exogenous co-expression system, utilizing AAV2 vectors to overexpress human α-synuclein and TOM20, individually or together, in the adult Lewis rat substantia nigra to assess whether TOM20 overexpression attenuates α-synuclein-induced dopaminergic neurodegeneration. Twelve weeks after viral injection, we observed that AAV2-TOM20 expression was sufficient to prevent loss of nigral dopaminergic neurons caused by AAV2-αSyn overexpression. The observed TOM20-mediated dopaminergic neuron preservation appeared to be due, in part, to the rescued expression (and presumed import) of nuclear-encoded mitochondrial electron transport chain proteins that were inhibited by α-synuclein overexpression. In addition, TOM20 overexpression rescued the expression of the chaperone protein GRP75/mtHSP70/mortalin, a stress-response protein involved in α-synuclein-induced injury. Collectively, these data indicate that TOM20 expression prevents α-synuclein-induced mitochondrial dysfunction, which is sufficient to rescue dopaminergic neurons in the adult rat brain.

14.
Toxicol Sci ; 170(1): 133-143, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30907971

RESUMO

There is a critical need to include female subjects in disease research; however, in Parkinson's disease, where the male-to-female incidence is about 1.5-to-1, the majority of preclinical research is conducted in male animals. The mitochondrial complex I inhibitor, rotenone, is selectively toxic to dopaminergic neurons, and reproduces several neuropathological features of Parkinson's disease, including α-synuclein pathology. Rotenone has been primarily utilized in male Lewis rats; however, pilot studies in age-matched female Lewis rats revealed that our usual dose (2.8 mg/kg/day intraperitoneal [i.p.]) did not cause dopaminergic neurodegeneration. Therefore, we compared rotenone-treated males (2.8 mg/kg/day, i.p.) to females at increasing doses (2.8 mg/kg/day, 3.2 mg/kg/day, 3.6 mg/kg/day, and 1.6 mg/kg bis in die, i.p.). Female rats receiving 3.2 mg/kg, and 3.6 mg/kg rotenone displayed significant loss of dopaminergic neurons in the substantia nigra as assessed by stereology, which was accompanied by a loss of striatal dopaminergic terminals. Even at these higher doses, however, females showed less inflammation, and less accumulation of α-synuclein and transferrin, possibly as a result of preserved autophagy. Thus, the bias toward increased male incidence of human Parkinson's disease is reflected in the rotenone model. Whether such sex differences will translate into differences in responses to mechanism-driven therapeutic interventions remains to be determined.


Assuntos
Doença de Parkinson/metabolismo , Rotenona/toxicidade , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Feminino , Humanos , Lisossomos/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Ratos , Ratos Endogâmicos Lew , Fatores Sexuais , Substância Negra/metabolismo , Transferrina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo
15.
Neurobiol Aging ; 67: 189-200, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735433

RESUMO

Aging is the predominant risk factor for both genetic and sporadic Parkinson's disease (PD). The majority of PD cases are nonfamilial, and the connection between aging and PD-associated genes is not well understood. Haploinsufficiency of the GBA gene, leading to a reduction in glucocerebrosidase (GCase) activity, is one of the most common genetic risk factors for PD. Furthermore, GCase activity is also reduced in brain regions of sporadic PD patients, with a corresponding accumulation of its glycosphingolipid (GSL) substrates. Recent findings in PD patients and aging control cases, and in human PD patient induced pluripotent stem cell neurons, have shown an age-dependent reduction in GCase activity and an elevation of some GSLs. We therefore asked whether aging-induced changes to both lysosomal and nonlysosomal GCase activity and GSL homeostasis in the brain could also be reflected in other nonhuman mammalian systems. Increases in brain polyubiquitin and the lysosomal-associated membrane protein, LAMP2A, were found in 24-month-old wild-type mice compared to 1.5-month-old mice. A lipidomic analysis was performed on brains of wild-type mice of different strains between 1.5 and 24 months of age. Aging created GSL changes that are reminiscent of sporadic PD. Levels of glucosylceramide, glucosylsphingosine, lactosylceramide, and GM1a were elevated in the brain of aged mice, and levels of complex gangliosides, GD1a, GD1b, and GT1b, were reduced with age. Parallel biochemical analyses revealed a change in lipid metabolism probably mediated by lysosomal hydrolases, with reduced GCase and increased neuraminidase activity. Based on these data, we hypothesize that perturbation of GSL metabolism in the aging brain may precede or may be part of abnormal protein handling and may accelerate PD pathophysiological processes in vulnerable neurons in PD and other age-related neurodegenerative disorders.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Glicoesfingolipídeos/metabolismo , Animais , Feminino , Glucosilceramidas/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Poliubiquitina/metabolismo , Fatores de Risco
16.
Sci Transl Med ; 10(451)2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30045977

RESUMO

Missense mutations in leucine-rich repeat kinase 2 (LRRK2) cause familial Parkinson's disease (PD). However, a potential role of wild-type LRRK2 in idiopathic PD (iPD) remains unclear. Here, we developed proximity ligation assays to assess Ser1292 phosphorylation of LRRK2 and, separately, the dissociation of 14-3-3 proteins from LRRK2. Using these proximity ligation assays, we show that wild-type LRRK2 kinase activity was selectively enhanced in substantia nigra dopamine neurons in postmortem brain tissue from patients with iPD and in two different rat models of the disease. We show that this occurred through an oxidative mechanism, resulting in phosphorylation of the LRRK2 substrate Rab10 and other downstream consequences including abnormalities in mitochondrial protein import and lysosomal function. Our study suggests that, independent of mutations, wild-type LRRK2 plays a role in iPD. LRRK2 kinase inhibitors may therefore be useful for treating patients with iPD who do not carry LRRK2 mutations.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação/genética , Ligação Proteica , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
17.
Ann Clin Transl Neurol ; 2(4): 433-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25909088

RESUMO

The principal risk factor for developing most adult onset neurodegenerative diseases is aging, with incidence rising significantly after age 50. Despite research efforts, the causes of Parkinson's disease (PD) remain unknown. As neurons age, they show signs of diminished lysosomal and mitochondrial function, including increased oxidative stress and accumulation of misfolded proteins, and these changes become exacerbated PD. We show that activity of the lysosomal hydrolase glucocerebrosidase gradually diminishes with age in the substantia nigra and putamen of healthy controls. This reduction is comparable to glucocerebrosidase activity in GBA1-mutation carrier PD patients. These data, demonstrate for the first time that an age-dependent reduction in glucocerebrosidase activity may lower the threshold for developing PD.

18.
PLoS One ; 10(3): e0121072, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25815475

RESUMO

Dopaminergic neurons in the substantia nigra pars compacta (SNpc) are characterized by the expression of genes required for dopamine synthesis, handling and reuptake and the expression of these genes is largely controlled by nuclear receptor related 1 (Nurr1). Nurr1 is also expressed in astrocytes and microglia where it functions to mitigate the release of proinflammatory cytokines and neurotoxic factors. Given that Parkinson's disease (PD) pathogenesis has been linked to both loss of Nurr1 expression in the SNpc and inflammation, increasing levels of Nurr1 maybe a promising therapeutic strategy. In this study a novel Nurr1 agonist, SA00025, was tested for both its efficiency to induce the transcription of dopaminergic target genes in vivo and prevent dopaminergic neuron degeneration in an inflammation exacerbated 6-OHDA-lesion model of PD. SA00025 (30mg/kg p.o.) entered the brain and modulated the expression of the dopaminergic phenotype genes TH, VMAT, DAT, AADC and the GDNF receptor gene c-Ret in the SN of naive rats. Daily gavage treatment with SA00025 (30mg/kg) for 32 days also induced partial neuroprotection of dopaminergic neurons and fibers in rats administered a priming injection of polyinosinic-polycytidylic acid (poly(I:C) and subsequent injection of 6-OHDA. The neuroprotective effects of SA00025 in this dopamine neuron degeneration model were associated with changes in microglial morphology indicative of a resting state and a decrease in microglial specific IBA-1 staining intensity in the SNpc. Astrocyte specific GFAP staining intensity and IL-6 levels were also reduced. We conclude that Nurr1 agonist treatment causes neuroprotective and anti-inflammatory effects in an inflammation exacerbated 6-OHDA lesion model of PD.


Assuntos
Dopamina/biossíntese , Imidazóis/administração & dosagem , Inflamação/tratamento farmacológico , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Doença de Parkinson Secundária/tratamento farmacológico , Piridinas/administração & dosagem , Receptor 3 Toll-Like/biossíntese , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Expressão Gênica , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Masculino , Microglia/metabolismo , Microglia/patologia , Degeneração Neural/tratamento farmacológico , Degeneração Neural/patologia , Neuroproteção/efeitos dos fármacos , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/agonistas , Oxidopamina/toxicidade , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Poli I-C/administração & dosagem , RNA de Cadeia Dupla , Ratos , Receptor 3 Toll-Like/genética
19.
Antioxid Redox Signal ; 23(6): 550-64, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26094487

RESUMO

AIMS: Loss-of-function mutations in GBA1, which cause the autosomal recessive lysosomal storage disease, Gaucher disease (GD), are also a key genetic risk factor for the α-synucleinopathies, including Parkinson's disease (PD) and dementia with Lewy bodies. GBA1 encodes for the lysosomal hydrolase glucocerebrosidase and reductions in this enzyme result in the accumulation of the glycolipid substrates glucosylceramide and glucosylsphingosine. Deficits in autophagy and lysosomal degradation pathways likely contribute to the pathological accumulation of α-synuclein in PD. In this report we used conduritol-ß-epoxide (CBE), a potent selective irreversible competitive inhibitor of glucocerebrosidase, to model reduced glucocerebrosidase activity in vivo, and tested whether sustained glucocerebrosidase inhibition in mice could induce neuropathological abnormalities including α-synucleinopathy, and neurodegeneration. RESULTS: Our data demonstrate that daily systemic CBE treatment over 28 days caused accumulation of insoluble α-synuclein aggregates in the substantia nigra, and altered levels of proteins involved in the autophagy lysosomal system. These neuropathological changes were paralleled by widespread neuroinflammation, upregulation of complement C1q, abnormalities in synaptic, axonal transport and cytoskeletal proteins, and neurodegeneration. INNOVATION: A reduction in brain GCase activity has been linked to sporadic PD and normal aging, and may contribute to the susceptibility of vulnerable neurons to degeneration. This report demonstrates that systemic reduction of GCase activity using chemical inhibition, leads to neuropathological changes in the brain reminiscent of α-synucleinopathy. CONCLUSIONS: These data reveal a link between reduced glucocerebrosidase and the development of α-synucleinopathy and pathophysiological abnormalities in mice, and support the development of GCase therapeutics to reduce α-synucleinopathy in PD and related disorders.


Assuntos
Complemento C1q/metabolismo , Glucosilceramidase/antagonistas & inibidores , Inositol/análogos & derivados , Microglia/fisiologia , Agregação Patológica de Proteínas/enzimologia , alfa-Sinucleína/metabolismo , Animais , Autofagia , Transporte Axonal , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Ativação do Complemento , Glucosilceramidase/metabolismo , Inositol/farmacologia , Masculino , Camundongos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/enzimologia , Agregação Patológica de Proteínas/induzido quimicamente , Proteínas/metabolismo , Transmissão Sináptica
20.
Neurosci Lett ; 576: 73-8, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24882721

RESUMO

Adeno-associated viral (AAV) gene transfer holds great promise for treating a wide-range of neurodegenerative disorders. The AAV9 serotype crosses the blood-brain barrier and shows enhanced transduction efficiency compared to other serotypes, thus offering advantageous targeting when global transgene expression is required. Neonatal intravenous or intracerebroventricular (i.c.v.) delivery of recombinant AAV9 (rAAV9) have recently proven effective for modeling and treating several rodent models of neurodegenerative disease, however, the technique is associated with variable cellular tropism, making tailored gene transfer a challenge. In the current study, we employ the human synapsin 1 (hSYN1) gene promoter to drive neuron-specific expression of green fluorescent protein (GFP) after neonatal i.c.v. injection of rAAV9 in mice. We observed widespread GFP expression in neurons throughout the brain, spinal cord, and peripheral nerves and ganglia at 6 weeks-of-age. Region-specific quantification of GFP expression showed high neuronal transduction rates in substantia nigra pars reticulata (43.9±5.4%), motor cortex (43.5±3.3%), hippocampus (43.1±2.7%), cerebellum (29.6±2.3%), cervical spinal cord (24.9±3.9%), and ventromedial striatum (16.9±4.3%), among others. We found that 14.6±2.2% of neuromuscular junctions innervating the gastrocnemius muscle displayed GFP immunoreactivity. GFP expression was identified in several neuronal sub-types, including nigral tyrosine hydroxylase (TH)-positive dopaminergic cells, striatal dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32)-positive neurons, and choline acetyltransferase (ChAT)-positive motor neurons. These results build on contemporary gene transfer techniques, demonstrating that the hSYN1 promoter can be used with rAAV9 to drive robust neuron-specific transgene expression throughout the nervous system.


Assuntos
Adenoviridae/genética , Encéfalo/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Neurônios/metabolismo , Medula Espinal/metabolismo , Sinapsinas/genética , Transgenes , Animais , Animais Recém-Nascidos , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/genética , Humanos , Injeções Intraventriculares , Camundongos , Regiões Promotoras Genéticas , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA