Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Amino Acids ; 54(5): 733-747, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35279763

RESUMO

Bombesin mediates several biological activities in the gastrointestinal (GI) tract and central nervous system in mammals, including smooth muscle contraction, secretion of GI hormones and regulation of homeostatic mechanisms. Here, we report a novel bombesin-like peptide isolated from Boana raniceps. Its amino acid sequence, GGNQWAIGHFM-NH2, was identified and structurally confirmed by HPLC, MS/MS and 454-pyrosequencing; the peptide was named BR-bombesin. The effect of BR-bombesin on smooth muscle contraction was assessed in ileum and esophagus, and its anti-secretory activity was investigated in the stomach. BR-bombesin exerted significant contractile activity with a concentration-response curve similar to that of commercially available bombesin in ileum strips of Wistar rats. In esophageal strips, BR-bombesin acted as an agonist, as many other bombesin-related peptides act, although with different behavior compared to the muscarinic agonist carbachol. Moreover, BR-bombesin inhibited stomach secretion by approximately 50% compared to the untreated control group. This novel peptide has 80% and 70% similarity with the 10-residue C-terminal domain of human neuromedin B (NMB) and human gastrin releasing peptide (GRP10), respectively. Molecular docking analysis revealed that the GRP receptor had a binding energy equal to - 7.3 kcal.mol-1 and - 8.5 kcal.mol-1 when interacting with bombesin and BR-bombesin, respectively. Taken together, our data open an avenue to investigate BR-bombesin in disorders that involve gastrointestinal tract motility and acid gastric secretion.


Assuntos
Bombesina , Receptores da Bombesina , Animais , Anuros/metabolismo , Bombesina/metabolismo , Bombesina/farmacologia , Mamíferos/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Ratos , Ratos Wistar , Receptores da Bombesina/genética , Receptores da Bombesina/metabolismo , Estômago , Espectrometria de Massas em Tandem
2.
Exp Parasitol ; 236-237: 108257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35398101

RESUMO

We performed a biological evaluation of antileishmanial activity, in silico ADME-Tox profile, and molecular docking of riparins A-F. The antileishmanial activity was evaluated in Leishmania major promastigotes, whereas the cytotoxic activity was tested on murine macrophages. Computational parameters were predicted by in silico analysis. Molecular docking was performed with 18 L. major molecular targets. Riparins, especially RipC and RipE, showed cytotoxic activity in vitro toward L. major promastigotes and a high selectivity index. Riparins showed small differences in their physicochemical properties, such as polarity and aqueous solubility. LogP was an important parameter for the differences in the antileishmanial activity between the molecules. In molecular docking, the ligands displayed Ki < 1 µM for LmNMT and LmLEI. Significant molecular interactions were observed with residues from the active site and adjacent regions of such enzymes. Thus, riparins have the potential for application in antileishmanial therapy.


Assuntos
Antiprotozoários , Leishmania major , Animais , Antiprotozoários/química , Antiprotozoários/toxicidade , Ligantes , Macrófagos , Camundongos , Simulação de Acoplamento Molecular
3.
Bioorg Med Chem Lett ; 47: 128192, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34118413

RESUMO

In this study, we analyzed the antimicrobial, antibiofilm, and modulatory activities of trans-trans-farnesol (tt-farnesol). The minimum inhibitory concentration (MIC) of this sesquiterpene was evaluated against 31 Gram-positive and Gram-negative bacterial strains and 4 species of the genus Candida. Furthermore, we examined its inhibitory action on biofilm production as well as antibiotic modulation. Only Gram-positive species presented susceptibility to tt-farnesol (MIC ranging from 8 µg/mL to 128 µg/mL). No synergistic or antagonistic effects were observed between tt-farnesol (1/4 and 1/8 of MIC) and first-choice antibiotics against multidrug resistant strains. However, the modulatory action of tt-farnesol (1/2 and 1/4 of the MIC) decreased 8 × MIC of non-inhibitory ß-lactam antibiotic against a Methicillin-resistant strain. In the antibiofilm assay, tt-farnesol inhibited biofilm formation, especially in Methicillin-resistant Staphylococcus aureus (MRSA) strains, at concentrations ranging from 2 µg/mL to 128 µg/mL. Additionally, in the molecular docking study, the tt-farnesol molecule demonstrated a remarkable binding affinity with important proteins involved in the biofilm production, such as IcaA and Srt proteins. The antimicrobial action of tt-farnesol on Streptococcus pyogenes and Streptococcus agalactiae strains was evaluated for the first time, presenting an MIC of 16 µg/mL for both strains. Our findings reveal the antibacterial, antibiofilm, and modulatory potential of tt-farnesol to aid in the fight against infectious processes.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Antibacterianos/química , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
4.
Molecules ; 25(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560278

RESUMO

Intestinal mucositis, characterized by inflammatory and/or ulcerative processes in the gastrointestinal tract, occurs due to cellular and tissue damage following treatment with 5-fluorouracil (5-FU). Rutin (RUT), a natural flavonoid extracted from Dimorphandra gardneriana, exhibits antioxidant, anti-inflammatory, cytoprotective, and gastroprotective properties. However, the effect of RUT on inflammatory processes in the intestine, especially on mucositis promoted by antineoplastic agents, has not yet been reported. In this study, we investigated the role of RUT on 5-FU-induced experimental intestinal mucositis. Swiss mice were randomly divided into seven groups: Saline, 5-FU, RUT-50, RUT-100, RUT-200, Celecoxib (CLX), and CLX + RUT-200 groups. The mice were weighed daily. After treatment, the animals were euthanized and segments of the small intestine were collected to evaluate histopathological alterations (morphometric analysis); malondialdehyde (MDA), myeloperoxidase (MPO), and glutathione (GSH) concentrations; mast and goblet cell counts; and cyclooxygenase-2 (COX-2) activity, as well as to perform immunohistochemical analyses. RUT treatment (200 mg/kg) prevented 5-FU-induced histopathological changes and reduced oxidative stress by decreasing MDA concentrations and increasing GSH concentrations. RUT attenuated the inflammatory response by decreasing MPO activity, intestinal mastocytosis, and COX-2 expression. These results suggest that the COX-2 pathway is one of the underlying protective mechanisms of RUT against 5-FU-induced intestinal mucositis.


Assuntos
Fluoruracila/efeitos adversos , Enteropatias , Mucosite , Estresse Oxidativo/efeitos dos fármacos , Rutina/farmacologia , Animais , Fluoruracila/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Enteropatias/induzido quimicamente , Enteropatias/tratamento farmacológico , Enteropatias/metabolismo , Enteropatias/patologia , Masculino , Camundongos , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/metabolismo , Mucosite/patologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-30559137

RESUMO

Schistosomiasis is a parasitic flatworm disease that infects over 200 million people worldwide, especially in poor communities. Treatment and control of the disease rely on just one drug, praziquantel. Since funding for drug development for poverty-associated diseases is very limited, drug repurposing is a promising strategy. In this study, from a screening of 13 marketed diuretics, we identified that spironolactone, a potassium-sparing diuretic, had potent antischistosomal effects on Schistosoma mansoniin vitro and in vivo in a murine model of schistosomiasis. In vitro, spironolactone at low concentrations (<10 µM) is able to alter worm motor activity and the morphology of adult schistosomes, leading to parasitic death. In vivo, oral treatment with spironolactone at a single dose (400 mg/kg) or daily for five consecutive days (100 mg/kg/day) in mice harboring either patent or prepatent infections significantly reduced worm burden, egg production, and hepato- and splenomegaly (P < 0.05 to P < 0.001). Taken together, with the safety profile of spironolactone, supported by its potential to affect schistosomes, these results indicate that spironolactone could be a potential treatment for schistosomiasis and make it promising for repurposing.


Assuntos
Reposicionamento de Medicamentos/métodos , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose/tratamento farmacológico , Esquistossomicidas/farmacologia , Espironolactona/farmacologia , Animais , Modelos Animais de Doenças , Diuréticos/farmacologia , Feminino , Masculino , Camundongos , Praziquantel/farmacologia
6.
Int J Mol Sci ; 19(6)2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921756

RESUMO

Schistosomiasis, caused by helminth flatworms of the genus Schistosoma, is an infectious disease mainly associated with poverty that affects millions of people worldwide. Since treatment for this disease relies only on the use of praziquantel, there is an urgent need to identify new antischistosomal drugs. Piplartine is an amide alkaloid found in several Piper species (Piperaceae) that exhibits antischistosomal properties. The aim of this study was to evaluate the structure­function relationship between piplartine and its five synthetic analogues (19A, 1G, 1M, 14B and 6B) against Schistosoma mansoni adult worms, as well as its cytotoxicity to mammalian cells using murine fibroblast (NIH-3T3) and BALB/cN macrophage (J774A.1) cell lines. In addition, density functional theory calculations and in silico analysis were used to predict physicochemical and toxicity parameters. Bioassays revealed that piplartine is active against S. mansoni at low concentrations (5⁻10 µM), but its analogues did not. In contrast, based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, piplartine exhibited toxicity in mammalian cells at 785 µM, while its analogues 19A and 6B did not reduce cell viability at the same concentrations. This study demonstrated that piplartine analogues showed less activity against S. mansoni but presented lower toxicity than piplartine.


Assuntos
Anti-Helmínticos/farmacologia , Piperidonas/farmacologia , Extratos Vegetais/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Células 3T3 , Animais , Anti-Helmínticos/química , Anti-Helmínticos/toxicidade , Cricetinae , Fibroblastos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Piper/química , Piperidonas/química , Piperidonas/toxicidade , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Relação Quantitativa Estrutura-Atividade , Caramujos
7.
Phytother Res ; 31(4): 624-630, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28111828

RESUMO

Pilocarpus microphyllus Stapf ex Wardlew (Rutaceae), popularly known as jaborandi, is a plant native to the northern and northeastern macroregions of Brazil. Several alkaloids from this species have been isolated. There are few reports of antibacterial and anthelmintic activities for these compounds. In this work, we report the antibacterial and anthelmintic activity of five alkaloids found in P. microphyllus leaves, namely, pilosine, epiisopilosine, isopilosine, epiisopiloturine and macaubine. Of these, only anthelmintic activity of one of the compounds has been previously reported. Nuclear magnetic resonance, HPLC and mass spectrometry were combined and used to identify and confirm the structure of the five compounds. As regards the anthelmintic activity, the alkaloids were studied using in vitro assays to evaluate survival time and damaged teguments for Schistosoma mansoni adult worms. We found epiisopilosine to have anthelmintic activity at very low concentrations (3.125 µg mL-1 ); at this concentration, it prevented mating, oviposition, reducing motor activity and altered the tegument of these worms. In contrast, none of the alkaloids showed antibacterial activity. Additionally, alkaloids displayed no cytotoxic effect on vero cells. The potent anthelmintic activity of epiisopilosine indicates the potential of this natural compound as an antiparasitic agent. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Alcaloides/química , Anti-Helmínticos/química , Antibacterianos/química , Imidazóis/química , Pilocarpus/química , Extratos Vegetais/química , Folhas de Planta/química , 4-Butirolactona/análogos & derivados , Animais , Imidazóis/farmacologia , Células Vero
8.
Chem Biol Interact ; 398: 111115, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908811

RESUMO

In the present study, the effect of sulfonamide-chalcone 185 (SSC185) was investigated against B16-F10 metastatic melanoma cells aggressive actions, besides migration and adhesion processes, by in silico and in vitro assays. In silico studies were used to characterize the pharmacokinetic profile and possible targets of SSC185, using the pkCSM web server, and docking simulations with AutoDock Tools. Furthermore, the antimetastatic effect of SSC185 was investigated by in vitro experiments using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide), colony, scratch, and cell adhesion assays, and atomic force microscopy (AFM). The molecular docking results show better affinity of SSC185 with the metalloproteinases-2 (MMP-2) and α5ß1 integrin. SSC185 effectively restricts the formation of colonies, migration, and adhesion of B16-F10 metastatic melanoma cells. Through the AFM images changes in cells morphology was identified, with a decrease in the filopodia and increase in the average cellular roughness. The results obtained demonstrate the potential of this molecule in inhibit the primordial steps for metastasis, which is responsible for a worse prognosis of late stage cancer, being the main cause of morbidity among cancer patients.


Assuntos
Adesão Celular , Movimento Celular , Chalcona , Simulação de Acoplamento Molecular , Sulfonamidas , Movimento Celular/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Sulfonamidas/farmacologia , Sulfonamidas/química , Camundongos , Animais , Linhagem Celular Tumoral , Chalcona/farmacologia , Chalcona/química , Chalcona/análogos & derivados , Metaloproteinase 2 da Matriz/metabolismo , Melanoma Experimental/patologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Microscopia de Força Atômica , Antineoplásicos/farmacologia , Antineoplásicos/química , Chalconas/farmacologia , Chalconas/química , Humanos
9.
Int J Biol Macromol ; 274(Pt 2): 133048, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857734

RESUMO

Epiisopiloturine (EPI) is a compound found in jaborandi leaves with antiparasitic activity, which can be enhanced when incorporated into nanoparticles (NP). Cashew Gum (CG), modified by carboxymethylation, is used to produce polymeric nanomaterials with biological activity. In this study, we investigated the antimicrobial potential of carboxymethylated CG (CCG) NP containing EPI (NPCCGE) and without the alkaloid (NPCCG) against bacteria and parasites of the genus Leishmania. We conducted theoretical studies, carboxymethylated CG, synthesized NP by nanoprecipitation, characterized them, and tested them in vitro. Theoretical studies confirmed the stability of modified carbohydrates and showed that the EPI-4A30 complex had the best interaction energy (-8.47 kcal/mol). CCG was confirmed by FT-IR and presented DSabs of 0.23. NPCCG and NPCCGE had average sizes of 221.94 ± 144.086 nm and 247.36 ± 3.827 nm, respectively, with homogeneous distribution and uniform surfaces. No NP showed antibacterial activity or cytotoxicity to macrophages. NPCCGE demonstrated antileishmanial activity against L. amazonensis, both in promastigote forms (IC50 = 9.52 µg/mL, SI = 42.01) and axenic amastigote forms (EC50 = 6.6 µg/mL, SI = 60.60). The results suggest that nanostructuring EPI in CCG enhances its antileishmanial activity.

10.
Mucosal Immunol ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38555027

RESUMO

Studies have reported the occurrence of gastrointestinal (GI) symptoms, primarily diarrhea, in COVID-19. However, the pathobiology regarding COVID-19 in the GI tract remains limited. This work aimed to evaluate SARS-CoV-2 Spike protein interaction with gut lumen in different experimental approaches. Here, we present a novel experimental model with the inoculation of viral protein in the murine jejunal lumen, in vitro approach with human enterocytes, and molecular docking analysis. Spike protein led to increased intestinal fluid accompanied by Cl- secretion, followed by intestinal edema, leukocyte infiltration, reduced glutathione levels, and increased cytokine levels [interleukin (IL)-6, tumor necrosis factor-α, IL-1ß, IL-10], indicating inflammation. Additionally, the viral epitope caused disruption in the mucosal histoarchitecture with impairment in Paneth and goblet cells, including decreased lysozyme and mucin, respectively. Upregulation of toll-like receptor 2 and toll-like receptor 4 gene expression suggested potential activation of local innate immunity. Moreover, this experimental model exhibited reduced contractile responses in jejunal smooth muscle. In barrier function, there was a decrease in transepithelial electrical resistance and alterations in the expression of tight junction proteins in the murine jejunal epithelium. Additionally, paracellular intestinal permeability increased in human enterocytes. Finally, in silico data revealed that the Spike protein interacts with cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride conductance (CaCC), inferring its role in the secretory effect. Taken together, all the events observed point to gut impairment, affecting the mucosal barrier to the innermost layers, establishing a successful experimental model for studying COVID-19 in the GI context.

11.
Pharmaceutics ; 16(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38399250

RESUMO

The potential emergence of zoonotic diseases has raised significant concerns, particularly in light of the recent pandemic, emphasizing the urgent need for scientific preparedness. The bioprospection and characterization of new molecules are strategically relevant to the research and development of innovative drugs for viral and bacterial treatment and disease management. Amphibian species possess a diverse array of compounds, including antimicrobial peptides. This study identified the first bioactive peptide from Salamandra salamandra in a transcriptome analysis. The synthetic peptide sequence, which belongs to the defensin family, was characterized through MALDI TOF/TOF mass spectrometry. Molecular docking assays hypothesized the interaction between the identified peptide and the active binding site of the spike WT RBD/hACE2 complex. Although additional studies are required, the preliminary evaluation of the antiviral potential of synthetic SS-I was conducted through an in vitro cell-based SARS-CoV-2 infection assay. Additionally, the cytotoxic and hemolytic effects of the synthesized peptide were assessed. These preliminary findings highlighted the potential of SS-I as a chemical scaffold for drug development against COVID-19, hindering viral infection. The peptide demonstrated hemolytic activity while not exhibiting cytotoxicity at the antiviral concentration.

12.
Adv Respir Med ; 91(6): 464-485, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37987297

RESUMO

The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2019) etiological agent, which has a high contagiousness and is to blame for the outbreak of acute viral pneumonia, is the cause of the respiratory disease COVID-19. The use of natural products grew as an alternative treatment for various diseases due to the abundance of organic molecules with pharmacological properties. Many pharmaceutical studies have focused on investigating compounds with therapeutic potential. Therefore, this study aimed to identify potential antiviral compounds from a popular medicinal plant called Moringa oleifera Lam. against the spike, Mpro, ACE2, and RBD targets of SARS-CoV-2. For this, we use molecular docking to identify the molecules with the greatest affinity for the targets through the orientation of the ligand with the receptor in complex. For the best results, ADME-TOX predictions were performed to evaluate the pharmacokinetic properties of the compounds using the online tool pkCSM. The results demonstrate that among the 61 molecules of M. oleifera, 22 molecules showed promising inhibition results, where the compound ellagic acid showed significant molecular affinity (-9.3 kcal.mol-1) in interaction with the spike protein. These results highlight the relevance of investigating natural compounds from M. oleifera as potential antivirals against SARS-CoV-2; however, additional studies are needed to confirm the antiviral activity of the compounds.


Assuntos
COVID-19 , Moringa oleifera , Humanos , SARS-CoV-2 , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/uso terapêutico
13.
Toxicol In Vitro ; 88: 105560, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36681287

RESUMO

Bioprospecting and synthesis of strategically designed molecules have been used in the search for drugs that can be in leishmaniasis. Hydrazones (HDZ) are promising compounds with extensive biological activities. The objective of this work was to perform in silico studies of hydrazones 1-5 and to evaluate their antileishmanial, cytotoxic and macrophage immunomodulatory potential in vitro. Hydrazones were subjected to prediction and molecular docking studies. Antileishmanial protocols on promastigotes and amastigotes of Leishmania amazonensis, cytotoxicity and macrophage immunomodulatory activity were performed. Hydrazones showed a good pharmacokinetic profile and hydrazone 3 and hydrazone 5 were classified as non-carcinogenic. Hydrazone 5 obtained the best conformation with trypanothione reductase. Hydrazone 1 and hydrazone 3 obtained the best mean inhibitory concentration (IC50) values for promastigotes, 4.4-61.96 µM and 8.0-58.75 µM, respectively. It also showed good activity on intramacrophagic amastigotes, with hydrazone 1 being the most active (IC50 = 6.79 µM) with selectivity index of 56. In cytotoxicity to macrophages hydrazone 3 was the most cytotoxic (CC50 = 256.3 ± 0,04 µM), while hydrazone 4 the least (CC50 = 1055.9 ± 0.03 µM). It can be concluded that the hydrazones revealed important pharmacokinetic and toxicological properties, in addition to antileishmania potential in reducing infection and infectivity in parasitized macrophages.


Assuntos
Antineoplásicos , Antiprotozoários , Leishmania , Leishmaniose , Humanos , Simulação de Acoplamento Molecular , Hidrazonas/farmacologia , Macrófagos , Leishmaniose/tratamento farmacológico , Antiprotozoários/toxicidade , Antineoplásicos/uso terapêutico
14.
Food Res Int ; 173(Pt 1): 113334, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803644

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) of the gastrointestinal tract. The etiology is not fully understood, but environmental, microbial, and immunologic factors, as well as a genetic predisposition, play a role. UC is characterized by episodes of abdominal pain, diarrhea, bloody stools, weight loss, severe colonic inflammation, and ulceration. Despite the increase in the frequency of UC and the deterioration of the quality of life, there are still patients who do not respond well to available treatment options. Against this background, natural products such as polysaccharides are becoming increasingly important as they protect the intestinal mucosa, promote wound healing, relieve inflammation and pain, and restore intestinal motility. In this study, we investigated the effect of a polysaccharide isolated from the biomass of Campomanesia adamantium and Campomanesia pubescens (here referred to as CPW) in an experimental model of acute and chronic ulcerative colitis induced by dextran sulfate sodium (DSS). CPW reversed weight loss, increased disease activity index (DAI), bloody diarrhea, and colon shortening. In addition, CPW reduced visceral mechanical hypersensitivity, controlled oxidative stress and inflammation, and protected the mucosal barrier. CPW is not absorbed in the intestine, does not inhibit cytochrome P450 proteins, and does not exhibit AMES toxicity. These results suggest that CPW attenuates DSS-induced acute and chronic colitis in mice and may be a potential alternative treatment for UC.


Assuntos
Colite Ulcerativa , Humanos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Qualidade de Vida , Modelos Animais de Doenças , Inflamação , Redução de Peso , Diarreia
15.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-37259336

RESUMO

Leishmaniasis is a group of infectious-parasitic diseases with high mortality rates, and endemic in many regions of the globe. The currently available drugs present serious problems such as high toxicity, costs, and the emergence of drug resistance. This has stimulated research into new antileishmania drugs based on natural products and their derivatives. ß-Ocimene is a monoterpene found naturally in the essential oils of many plant species which presents antileishmanial activity, and which has not yet been evaluated for its potential to inhibit the etiological agent of leishmaniasis. The aim of this work was to evaluate the activity of ß-ocimene against Leishmania amazonensis, its cytotoxicity, and potential mechanisms of action. ß-Ocimene presented direct activity against the parasite, with excellent growth inhibition of promastigotes (IC50 = 2.78 µM) and axenic amastigotes (EC50 = 1.12 µM) at concentrations non-toxic to RAW 264.7 macrophages (CC50 = 114.5 µM). The effect is related to changes in membrane permeability and resulting abnormalities in the parasitic cell shape. These were, respectively, observed in membrane integrity and atomic force microscopy assays. ß-Ocimene was also shown to act indirectly, with greater activity against intra-macrophagic amastigotes (EC50 = 0.89 µM), increasing TNF-α, nitric oxide (NO), and reactive oxygen species (ROS), with lysosomal effects, as well as promoting decreases in IL-10 and IL-6. Against intra-macrophagic amastigote forms the selectivity index was higher than the reference drugs, being 469.52 times more selective than meglumine antimoniate, and 42.88 times more selective than amphotericin B. Our results suggest that ß-ocimene possesses promising in vitro antileishmania activity and is a potential candidate for investigation in in vivo assays.

16.
Food Res Int ; 156: 111291, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35651057

RESUMO

Inflammatory bowel disease (IBD) includes two distinct diseases: Crohn's disease (CD) and ulcerative colitis (UC). IBD is a chronic systemic disease of the gastrointestinal tract, characterized by an inflammatory process. The mechanisms by which diseases develop are still unknown, but it is known that it results from a complex interaction between genetic variability, the host's immune system, and environmental factors. One of the main complaints of patients is abdominal pain, which may be associated with the release of inflammatory mediators, changes in the normal motility of the digestive tract, and increased intestinal permeability. Currently available drugs for abdominal pain are not satisfactory, therefore, it is extremely necessary to seek new therapeutic options for the treatment of abdominal pain. Polysaccharides extracted from fruits have attracted interest, as these molecules protect the intestinal mucosa and promote wound healing, attenuating inflammation, pain, and altered intestinal motility. In this study, we investigated the ability of pectic polysaccharides obtained from guavira pomace, named CPW to reduce visceral hypersensitivity, regulate intestinal motility, and control diarrhea in mice. Acetic acid, capsaicin, or mustard oil were used to assess visceral pain in normal mice. CPW reduced abdominal writhing, cell migration, and capsaicin-induced visceral nociception. Furthermore, it regulated intestinal motility and all measured parameters of castor oil-induced diarrhea. CPW treatment reversed the increase in mucosal permeability, TEER, and tissue weight caused by acetic acid. In addition, molecular docking analysis showed that specific the CPW units binds to the 3N8V, 5COX, 2J67 and 6RBF proteins. Thus, the results suggest that CPW has attractive therapeutic characteristics for the treatment of abdominal pain and ulcerative colitis.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Dor Abdominal/tratamento farmacológico , Animais , Capsaicina , Colite Ulcerativa/tratamento farmacológico , Diarreia , Carboidratos da Dieta , Frutas , Humanos , Camundongos , Simulação de Acoplamento Molecular , Polissacarídeos/farmacologia
17.
Chem Biol Interact ; 367: 110161, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116513

RESUMO

Diminazene aceturate (DIZE), an antiparasitic, is an ACE2 activator, and studies show that activators of this enzyme may be beneficial for COVID-19, disease caused by SARS-CoV-2. Thus, the objective was to evaluate the in silico and in vitro affinity of diminazene aceturate against molecular targets of SARS-CoV-2. 3D structures from DIZE and the proteases from SARS-CoV-2, obtained through the Protein Data Bank and Drug Database (Drubank), and processed in computer programs like AutodockTools, LigPlot, Pymol for molecular docking and visualization and GROMACS was used to perform molecular dynamics. The results demonstrate that DIZE could interact with all tested targets, and the best binding energies were obtained from the interaction of Protein S (closed conformation -7.87 kcal/mol) and Mpro (-6.23 kcal/mol), indicating that it can act both by preventing entry and viral replication. The results of molecular dynamics demonstrate that DIZE was able to promote a change in stability at the cleavage sites between S1 and S2, which could prevent binding to ACE2 and fusion with the membrane. In addition, in vitro tests confirm the in silico results showing that DIZE could inhibit the binding between the spike receptor-binding domain protein and ACE2, which could promote a reduction in the virus infection. However, tests in other experimental models with in vivo approaches are needed.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Antiparasitários , Antivirais/química , Antivirais/farmacologia , Diminazena/análogos & derivados , Humanos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Peptidil Dipeptidase A/química , Proteína S
18.
Biosens Bioelectron ; 185: 113234, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33945892

RESUMO

This study presents a new polymeric and multielectronic system, the poly-Alizarin Red S (PARS), obtained from the electropolymerization of Alizarin Red S (ARS) dye on an edge-plane pyrolytic graphite electrode (EPPGE) surface. During EPPGE/PARS electrochemical characterization, we identified seven stable and reversible redox peaks in acidic medium (0.10 mol L-1, pH 1.62 KH2PO4), which indicated its mechanisms underlying electropolymerization and electrochemical behavior. To the best of our knowledge, this is the first study to use an EPPGE/PARS electrode to detect oxandrolone (OXA) in artificial urine, where PARS acts as a synthetic receptor for OXA. The interactions of OXA with EPPGE/PARS as well as the properties of PARS were investigated using density functional theory (DFT). Atomic force microscopy (AFM) was used to characterize EPPGE/PARS, and it was found that the PARS polymer formed a semi-globular phase on the EPPGE surface. The limit of detection for OXA found by the sensor was close to 0.50 nmol L-1, with a recovery rate of approximately 100% in artificial urine. In addition to the application proposed in this study, EPPGE/PARS is a low-cost product that could be applied in several devices and processes, such as supercapacitors and electrocatalysis.


Assuntos
Técnicas Biossensoriais , Grafite , Antraquinonas , Eletrodos , Eletrônica , Oxandrolona
19.
Int Immunopharmacol ; 100: 108130, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34500286

RESUMO

Leishmaniasis is a set of infectious diseases with high rates of morbidity and mortality, it affects millions of people around the world. Treatment, mainly with pentavalent antimonials, presents significant toxicity and many cases of resistance. In previous works we have demonstrated the effective and selective antileishmanial activity of Eugenia uniflora L. essential oil, being constituted (47.3%) by the sesquiterpene curzerene. Considering the high rate of parasite inhibition demonstrated for E. uniflora essential oil, and the significant presence of curzerene in the oil, this study aimed to evaluate its antileishmania activity and possible mechanisms of action. Curzerene was effective in inhibiting the growth of promastigotes (IC50 3.09 ± 0.14 µM) and axenic amastigotes (EC50 2.56 ± 0.12 µM), with low cytotoxicity to RAW 264.7 macrophages (CC50 83.87 ± 4.63 µM). It was observed that curzerene has direct effects on the parasite, inducing cell death by apoptosis with secondary necrotic effects (producing pores in the plasma membrane). Curzerene proved to be even more effective against intra-macrophage amastigote forms, with an EC50 of 0.46 ± 0.02 µM. The selectivity index demonstrated by curzerene on these parasite forms was 182.32, being respectively 44.15 and 8.47 times more selective than meglumine antimoniate and amphotericin B. The antiamastigote activity of curzerene was associated with immunomodulatory activity, as it increased TNF-α, IL-12, and NO levels, and lysosomal activity, and decreased IL-10 and IL-6 cytokine levels detected in macrophages infected and treated. In conclusion, our results demonstrate that curzerene is an effective and selective antileishmanial agent, a candidate for in vivo investigation in models of antileishmanial activity.


Assuntos
Antiprotozoários/farmacologia , Leishmania mexicana/efeitos dos fármacos , Sesquiterpenos/farmacologia , Animais , Antiprotozoários/uso terapêutico , Apoptose/efeitos dos fármacos , Humanos , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Leishmania mexicana/crescimento & desenvolvimento , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Simulação de Acoplamento Molecular , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
20.
Int J Biol Macromol ; 165(Pt A): 279-290, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32956746

RESUMO

In the present work, we investigated the minimal inhibitory concentration (MIC) against fungal strains (Fonsecaea pedrosoi, Microsporum canis, Candida albicans, Cryptococcus neoformans), and cytotoxicity to normal cell lines for modified red angico gum (AG) with eterifying agent N-chloride (3-chloro-2-hydroxypropyl) trimethylammonium (CHPTAC). Quaternized ammonium groups were linked to AG backbone using N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride. The chemical features of the quaternized gum derivatives (QAG) were analyzed by: FTIR, elemental analysis, Zeta potential and gel permeation chromatography. The angico quaternizated gum presented a degree of substitution (DS) of 0.22 and Zeta potential of +36.43. For the antifungal test, it was observed that unmodified gum did not inhibit fungal growth. While, QAG inhibited the growth of most fungi used in this study. By AFM technique QAG interacted with the fungal surface, altering wall roughness significantly. The probable affinity of fragments of the QAG structure for the fungal enzyme 5I33 (Adenylosuccinate synthetase) has been shown by molecular docking. Low cytotoxicity was observed for polymers (unmodified gum and QAG). The results demonstrate that the quaternized polymer of AG presented in this study is a quite promising biomaterial for biotechnological applications.


Assuntos
Antifúngicos , Citotoxinas , Inibidores Enzimáticos , Fabaceae/química , Proteínas Fúngicas , Fungos/enzimologia , Simulação de Acoplamento Molecular , Polissacarídeos , Animais , Antifúngicos/química , Antifúngicos/farmacologia , Citotoxinas/química , Citotoxinas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Células HEK293 , Humanos , Ligases/antagonistas & inibidores , Ligases/química , Camundongos , Polissacarídeos/química , Polissacarídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA