Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 299(1): 73, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066857

RESUMO

Exploring the intricate relationships between plants and their resident microorganisms is crucial not only for developing new methods to improve disease resistance and crop yields but also for understanding their co-evolutionary dynamics. Our research delves into the role of the phyllosphere-associated microbiome, especially Actinomycetota species, in enhancing pathogen resistance in Theobroma grandiflorum, or cupuassu, an agriculturally valuable Amazonian fruit tree vulnerable to witches' broom disease caused by Moniliophthora perniciosa. While breeding resistant cupuassu genotypes is a possible solution, the capacity of the Actinomycetota phylum to produce beneficial metabolites offers an alternative approach yet to be explored in this context. Utilizing advanced long-read sequencing and metagenomic analysis, we examined Actinomycetota from the phyllosphere of a disease-resistant cupuassu genotype, identifying 11 Metagenome-Assembled Genomes across eight genera. Our comparative genomic analysis uncovered 54 Biosynthetic Gene Clusters related to antitumor, antimicrobial, and plant growth-promoting activities, alongside cutinases and type VII secretion system-associated genes. These results indicate the potential of phyllosphere-associated Actinomycetota in cupuassu for inducing resistance or antagonism against pathogens. By integrating our genomic discoveries with the existing knowledge of cupuassu's defense mechanisms, we developed a model hypothesizing the synergistic or antagonistic interactions between plant and identified Actinomycetota during plant-pathogen interactions. This model offers a framework for understanding the intricate dynamics of microbial influence on plant health. In conclusion, this study underscores the significance of the phyllosphere microbiome, particularly Actinomycetota, in the broader context of harnessing microbial interactions for plant health. These findings offer valuable insights for enhancing agricultural productivity and sustainability.


Assuntos
Doenças das Plantas , Folhas de Planta , Folhas de Planta/microbiologia , Folhas de Planta/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Microbiota/genética , Ecossistema , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Metagenômica/métodos , Metagenoma/genética , Filogenia , Brassicaceae/microbiologia , Brassicaceae/genética
2.
Mutagenesis ; 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32789469

RESUMO

The antitumour activity of chrysin have been studied in several types of cancer cells. In urinary bladder cancer, its cytotoxic effects have already demonstrated; however, its mechanism of action is not completely understood and the role of tumour protein p53 (TP53) gene in these effects is unclear. In this study, we investigated the role of chrysin (10, 20, 40, 60 80 and 100 µM) in progression of bladder tumour cells with different status of the TP53 gene and different degrees of tumour (RT4, grade 1, TP53 wild type; 5637, grade 2, TP53 mutated and T24, grade 3, TP53 mutated). Results demonstrated that chrysin inhibited cell proliferation by increasing reactive oxygen species and DNA damage and inhibited cell migration in all cell lines. In TP53 wild-type cells, a sub-G1 apoptotic population was present. In mutated TP53 cells, chrysin caused arrest at the G2/M phase and morphological changes accompanied by downregulation of PLK1, SRC and HOXB3 genes. In addition, in Grade 2 cells, chrysin induced global DNA hypermethylation and, in the highest-grade cells, downregulated c-MYC, FGFR3 and mTOR gene expression. In conclusion, chrysin has antiproliferative and toxicogenetic activity in bladder tumour cells independently of TP53 status; however, the mechanisms of action are dependent on TP53 status.

3.
Front Microbiol ; 13: 966436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532494

RESUMO

The São Francisco River (SFR), one of the main Brazilian rivers, has suffered cumulative anthropogenic impacts, leading to ever-decreasing fish stocks and environmental, economic, and social consequences. Rhinelepis aspera and Prochilodus argenteus are medium-sized, bottom-feeding, and rheophilic fishes from the SFR that suffer from these actions. Both species are targeted for spawning and restocking operations due to their relevance in artisanal fisheries, commercial activities, and conservation concerns. Using high-throughput sequencing of the 16S rRNA gene, we characterized the microbiome present in the gills and guts of these species recruited from an impacted SFR region and hatchery tanks (HT). Our results showed that bacterial diversity from the gill and gut at the genera level in both fish species from HT is 87% smaller than in species from the SFR. Furthermore, only 15 and 29% of bacterial genera are shared between gills and guts in R. aspera and P. argenteus from SFR, respectively, showing an intimate relationship between functional differences in organs. In both species from SFR, pathogenic, xenobiont-degrading, and cyanotoxin-producer bacterial genera were found, indicating the critical pollution scenario in which the river finds itself. This study allowed us to conclude that the conditions imposed on fish in the HT act as important modulators of microbial diversity in the analyzed tissues. It also raises questions regarding the effects of these conditions on hatchery spawn fish and their suitability for restocking activities, aggravated by the narrow genetic diversity associated with such freshwater systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA