Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 31(20): 5201-5213, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35962751

RESUMO

Spatial genetic structure (SGS) is important to a population's ability to adapt to environmental change. For species that reproduce both sexually and asexually, the relative contribution of each reproductive mode has important ecological and evolutionary implications because asexual reproduction can have a strong effect on SGS. Reef-building corals reproduce sexually, but many species also propagate asexually under certain conditions. To understand SGS and the relative importance of reproductive mode across environmental gradients, we evaluated genetic relatedness in almost 600 colonies of Montipora capitata across 30 environmentally characterized sites in Kane'ohe Bay, O'ahu, Hawaii, using low-depth restriction digest-associated sequencing. Clonal colonies were relatively rare overall but influenced SGS. Clones were located significantly closer to one another spatially than average colonies and were more frequent on sites where wave energy was relatively high, suggesting a strong role of mechanical breakage in their formation. Excluding clones, we found no evidence of isolation by distance within sites or across the bay. Several environmental characteristics were significant predictors of the underlying genetic variation (including degree heating weeks, time spent above 30°C, depth, sedimentation rate and wave height); however, they only explained 5% of this genetic variation. Our results show that asexual fragmentation contributes to the ecology of branching corals at local scales and that genetic diversity is maintained despite strong environmental gradients in a highly impacted ecosystem, suggesting potential for broad adaptation or acclimatization in this population.


Assuntos
Antozoários , Ecossistema , Animais , Antozoários/genética , Baías , Estruturas Genéticas , Havaí
2.
J Vis Exp ; (170)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33938881

RESUMO

Structure-from-motion (SfM) photogrammetry is a technique used to generate three-dimensional (3D) reconstructions from a sequence of two-dimensional (2D) images. SfM methods are becoming increasingly popular as a noninvasive way to monitor many systems, including anthropogenic and natural landscapes, geologic structures, and both terrestrial and aquatic ecosystems. Here, a detailed protocol is provided for collecting SfM imagery to generate 3D models of benthic habitats. Additionally, the cost, time efficiency, and output quality of employing a Digital Single Lens Reflex (DSLR) camera versus a less expensive action camera have been compared. A tradeoff between computational time and resolution was observed, with the DSLR camera producing models with more than twice the resolution, but taking approximately 1.4-times longer to produce than the action camera. This primer aims to provide a thorough description of the steps necessary to collect SfM data in benthic habitats for those who are unfamiliar with the technique as well as for those already using similar methods.


Assuntos
Ecossistema , Imageamento Tridimensional/métodos , Fotogrametria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA