Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Chemistry ; 29(52): e202300030, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37378970

RESUMO

Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.

2.
Cell Mol Life Sci ; 78(6): 2893-2910, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33068124

RESUMO

Acyl-CoA synthetase 4 (ACSL4) is an isoenzyme of the fatty acid ligase-coenzyme-A family taking part in arachidonic acid metabolism and steroidogenesis. ACSL4 is involved in the development of tumor aggressiveness in breast and prostate tumors through the regulation of various signal transduction pathways. Here, a bioinformatics analysis shows that the ACSL4 gene expression and proteomic signatures obtained using a cell model was also observed in tumor samples from breast and cancer patients. A well-validated ACSL4 inhibitor, however, has not been reported hindering the full exploration of this promising target and its therapeutic application on cancer and steroidogenesis inhibition. In this study, ACSL4 inhibitor PRGL493 was identified using a homology model for ACSL4 and docking based virtual screening. PRGL493 was then chemically characterized through nuclear magnetic resonance and mass spectroscopy. The inhibitory activity was demonstrated through the inhibition of arachidonic acid transformation into arachidonoyl-CoA using the recombinant enzyme and cellular models. The compound blocked cell proliferation and tumor growth in both breast and prostate cellular and animal models and sensitized tumor cells to chemotherapeutic and hormonal treatment. Moreover, PGRL493 inhibited de novo steroid synthesis in testis and adrenal cells, in a mouse model and in prostate tumor cells. This work provides proof of concept for the potential application of PGRL493 in clinical practice. Also, these findings may prove key to therapies aiming at the control of tumor growth and drug resistance in tumors which express ACSL4 and depend on steroid synthesis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Coenzima A Ligases/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/farmacologia , Animais , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Coenzima A Ligases/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Próstata/citologia , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Esteroides/sangue , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Langmuir ; 36(27): 7901-7907, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32551689

RESUMO

The creation of complex active nanosystems integrating cytoskeletal filaments propelled by surface-adhered motor proteins often relies on the filaments' ability to glide over up to meter-long distances. While theoretical considerations support this ability, we show that microtubule detachment (either spontaneous or triggered by a microtubule crossing event) is a non-negligible phenomenon that has been overlooked until now. The average gliding distance before spontaneous detachment was measured to be 30 ± 10 mm for a functional kinesin-1 density of 500 µm-2 and 9 ± 4 mm for a functional kinesin-1 density of 100 µm-2 at 1 mM ATP. Even microtubules longer than 3 µm detached, suggesting that spontaneous detachment is not caused by the stochastic absence of motors or their stochastic release due to a limited run length.


Assuntos
Cinesinas , Microtúbulos
4.
Langmuir ; 36(45): 13527-13534, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33152250

RESUMO

The study of protein adsorption at the single molecule level has recently revealed that the adsorption is reversible, but with a long-tailed residence time distribution which can be approximated with a sum of exponential functions putatively related to distinct adsorption sites. Here it is proposed that the shape of the residence time distribution results from an adsorption process with sequential and reversible steps that contribute to overall binding strength resembling "zippering". In this model, the survival function of the residence time distribution of single proteins varies from an exponential distribution for a single adsorption step to a power law distribution with exponent -1/2 for a large number of adsorption steps. The adsorption of fluorescently labeled fibrinogen to glass surfaces is experimentally studied with single molecule imaging. The experimental residence time distribution can be readily fit by the proposed model. This demonstrates that the observed long residence times can arise from stepwise adsorption rather than rare but strong binding sites and provides guidance for the control of protein adsorption to biomaterials.


Assuntos
Fibrinogênio , Vidro , Adsorção , Cinética , Propriedades de Superfície
5.
Bioorg Med Chem ; 27(7): 1350-1361, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30808607

RESUMO

As a continuation of our project aimed at searching for new chemotherapeutic agents against American trypanosomiasis (Chagas disease), new selenocyanate derivatives were designed, synthesized and biologically evaluated against the clinically more relevant dividing form of Trypanosoma cruzi, the etiologic agent of this illness. In addition, in order to establish the role of each part of the selenocyanate moiety, different derivatives, in which the selenium atom or the cyano group were absent, were conceived, synthesized and biologically evaluated. In addition, in order to study the optimal position of the terminal phenoxy group, new regioisomers of WC-9 were synthesized and evaluated against T. cruzi. Finally, the resolution of a racemic mixture of a very potent conformationally rigid analogue of WC-9 was accomplished and further tested as growth inhibitors of T. cruzi proliferation. The results provide further insight into the role of the selenocyanate group in its antiparasitic activity.


Assuntos
Antiparasitários/farmacologia , Compostos Organosselênicos/farmacologia , Éteres Fenílicos/farmacologia , Tiocianatos/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiparasitários/síntese química , Antiparasitários/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Testes de Sensibilidade Parasitária , Éteres Fenílicos/química , Relação Estrutura-Atividade , Tiocianatos/química , Células Vero
6.
Bioorg Med Chem ; 27(16): 3663-3673, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31296439

RESUMO

As an extension of our project aimed at the search for new chemotherapeutic agents against Chagas disease and toxoplasmosis, several 1,1-bisphosphonates were designed, synthesized and biologically evaluated against Trypanosoma cruzi and Toxoplasma gondii, the etiologic agents of these diseases, respectively. In particular, and based on the antiparasitic activity exhibited by 2-alkylaminoethyl-1,1-bisphosphonates targeting farnesyl diphosphate synthase, a series of linear 2-alkylaminomethyl-1,1-bisphosphonic acids (compounds 21-33), that is, the position of the amino group was one carbon closer to the gem-phosphonate moiety, were evaluated as growth inhibitors against the clinically more relevant dividing form (amastigotes) of T. cruzi. Although all of these compounds resulted to be devoid of antiparasitic activity, these results were valuable for a rigorous SAR study. In addition, unexpectedly, the synthetic designed 2-cycloalkylaminoethyl-1,1-bisphosphonic acids 47-49 were free of antiparasitic activity. Moreover, long chain sulfur-containing 1,1-bisphosphonic acids, such as compounds 54-56, 59, turned out to be nanomolar growth inhibitors of tachyzoites of T. gondii. As many bisphosphonate-containing molecules are FDA-approved drugs for the treatment of bone resorption disorders, their potential nontoxicity makes them good candidates to control American trypanosomiasis and toxoplasmosis.


Assuntos
Antiprotozoários/uso terapêutico , Difosfonatos/síntese química , Difosfonatos/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Antiprotozoários/farmacologia , Difosfonatos/farmacologia , Relação Estrutura-Atividade
7.
J Org Chem ; 83(23): 14683-14687, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30433780

RESUMO

The first catalytic enantioselective pinacol rearrangement was reported by Antilla and co-workers in 2010. The reaction was catalyzed by a chiral phosphoric acid and resulted in high levels of enantioselectivity (up to 96% ee). The present study uses density functional theory to investigate the mechanism and origins of stereoselectivity of this important reaction and to explain the difference in selectivity between different catalysts. An OH···O hydrogen bond between the intermediate indolyl alcohol and the phosphate group from the catalyst together with a CH···O hydrogen bond between the indole and the phosphate group were observed in the preferred activation mode for the stereodetermining [1,2]-aryl shift. A stronger CH···O interaction in the major transition state was found to contribute to the high levels of enantioselectivity. A more bulky catalyst (TRIP) was found to impede the formation of the key CH···O interaction, leading to lower levels of enantioselectivity.

8.
Artigo em Inglês | MEDLINE | ID: mdl-28559264

RESUMO

Bisphosphonates are widely used for the treatment of bone disorders. These drugs also inhibit the growth of a variety of protozoan parasites, such as Toxoplasma gondii, the etiologic agent of toxoplasmosis. The target of the most potent bisphosphonates is the isoprenoid biosynthesis pathway enzyme farnesyl diphosphate synthase (FPPS). Based on our previous work on the inhibitory effect of sulfur-containing linear bisphosphonates against T. gondii, we investigated the potential synergistic interaction between one of these derivatives, 1-[(n-heptylthio)ethyl]-1,1-bisphosphonate (C7S), and statins, which are potent inhibitors of the host 3-hydroxy-3-methyl glutaryl-coenzyme A reductase (3-HMG-CoA reductase). C7S showed high activity against the T. gondii bifunctional farnesyl diphosphate (FPP)/geranylgeranyl diphosphate (GGPP) synthase (TgFPPS), which catalyzes the formation of FPP and GGPP (50% inhibitory concentration [IC50] = 31 ± 0.01 nM [mean ± standard deviation]), and modest effect against the human FPPS (IC50 = 1.3 ± 0.5 µM). We tested combinations of C7S with statins against the in vitro replication of T. gondii We also treated mice infected with a lethal dose of T. gondii with similar combinations. We found strong synergistic activities when using low doses of C7S, which were stronger in vivo than when tested in vitro We also investigated the synergism of several commercially available bisphosphonates with statins both in vitro and in vivo Our results provide evidence that it is possible to develop drug combinations that act synergistically by inhibiting host and parasite enzymes in vitro and in vivo.


Assuntos
Antiprotozoários/uso terapêutico , Atorvastatina/uso terapêutico , Difosfonatos/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Imidazóis/uso terapêutico , Toxoplasma/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico , Acil Coenzima A/metabolismo , Animais , Linhagem Celular , Difosfonatos/farmacologia , Geranil-Geranildifosfato Geranil-Geraniltransferase/antagonistas & inibidores , Geraniltranstransferase/antagonistas & inibidores , Geraniltranstransferase/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Camundongos , Fosfatos de Poli-Isoprenil/biossíntese , Sesquiterpenos , Toxoplasma/crescimento & desenvolvimento , Ácido Zoledrônico
9.
Artigo em Inglês | MEDLINE | ID: mdl-27895021

RESUMO

We tested a series of sulfur-containing linear bisphosphonates against Toxoplasma gondii, the etiologic agent of toxoplasmosis. The most potent compound (compound 22; 1-[(n-decylsulfonyl)ethyl]-1,1-bisphosphonic acid) is a sulfone-containing compound, which had a 50% effective concentration (EC50) of 0.11 ± 0.02 µM against intracellular tachyzoites. The compound showed low toxicity when tested in tissue culture with a selectivity index of >2,000. Compound 22 also showed high activity in vivo in a toxoplasmosis mouse model. The compound inhibited the Toxoplasma farnesyl diphosphate synthase (TgFPPS), but the concentration needed to inhibit 50% of the enzymatic activity (IC50) was higher than the concentration that inhibited 50% of growth. We tested compound 22 against two other apicomplexan parasites, Plasmodium falciparum (EC50 of 0.6 ± 0.01 µM), the agent of malaria, and Cryptosporidium parvum (EC50 of ∼65 µM), the agent of cryptosporidiosis. Our results suggest that compound 22 is an excellent novel compound that could lead to the development of potent agents against apicomplexan parasites.


Assuntos
Antiprotozoários/farmacologia , Cryptosporidium parvum/efeitos dos fármacos , Difosfonatos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Toxoplasma/efeitos dos fármacos , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Técnicas de Química Sintética , Cryptosporidium parvum/crescimento & desenvolvimento , Difosfonatos/síntese química , Difosfonatos/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Geraniltranstransferase/antagonistas & inibidores , Humanos , Camundongos Endogâmicos , Plasmodium falciparum/crescimento & desenvolvimento , Enxofre/química , Enxofre/farmacologia , Toxoplasma/enzimologia , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/tratamento farmacológico
10.
Bioorg Med Chem ; 25(24): 6435-6449, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29107437

RESUMO

The obligate intracellular parasite, Trypanosoma cruzi is the etiologic agent of Chagas disease or American trypanosomiasis, which is the most prevalent parasitic disease in the Americas. The present chemotherapy to control this illness is still deficient particularly in the chronic stage of the disease. The ergosterol biosynthesis pathway has received much attention as a molecular target for the development of new drugs for Chagas disease. Especially, inhibitors of the enzymatic activity of squalene synthase were shown to be effective compounds on T. cruzi proliferation in in vitro assays. In the present study we designed, synthesized and evaluated the effect of a number of isosteric analogues of WC-9 (4-phenoxyphenoxyethyl thiocyanate), a known squalene synthase inhibitor, on T. cruzi growth in tissue culture cells. The selenium-containing derivatives turned out to be extremely potent inhibitors of T. cruzi growth. Certainly, 3-phenoxyphenoxyethyl, 4-phenoxyphenoxyethyl, 4-(3-fluorophenoxy)phenoxyethyl, 3-(3-fluorophenoxy)phenoxyethyl selenocyanates and (±)-5-phenoxy-2-(selenocyanatomethyl)-2,3-dihydrobenzofuran arose as relevant members of this family of compounds, which exhibited effective ED50 values of 0.084 µM, 0.11 µM, 0.083, µM, 0.085, and 0.075 µM, respectively. The results indicate that compounds bearing the selenocyanate moiety are at least two orders of magnitude more potent than the corresponding skeleton counterpart bearing the thiocyanate group. Surprisingly, these compounds exhibited excellent selectively index values ranging from 900 to 1800 making these molecules promising candidates as antiparasitic agents.


Assuntos
Éteres Fenílicos/farmacologia , Selênio/farmacologia , Tiocianatos/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Éteres Fenílicos/síntese química , Éteres Fenílicos/química , Selênio/química , Relação Estrutura-Atividade , Tiocianatos/síntese química , Tiocianatos/química , Tripanossomicidas/síntese química , Tripanossomicidas/química , Trypanosoma cruzi/citologia , Trypanosoma cruzi/crescimento & desenvolvimento , Células Vero
11.
Molecules ; 22(1)2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-28054995

RESUMO

Based on crystallographic data of the complexes 2-alkyl(amino)ethyl-1,1-bisphosphonates-Trypanosoma cruzi farnesyl diphosphate synthase, some linear 1,1-bisphosphonic acids and other closely related derivatives were designed, synthesized and biologically evaluated against T. cruzi, the responsible agent of Chagas disease and against Toxoplasma gondii, the etiologic agent of toxoplasmosis and also towards the target enzymes farnesyl pyrophosphate synthase of T. cruzi (TcFPPS) and T gondii (TgFPPS), respectively. The isoprenoid-containing 1,1-bisphosphonates exhibited modest antiparasitic activity, whereas the linear α-fluoro-2-alkyl(amino)ethyl-1,1-bisphosphonates were unexpectedly devoid of antiparasitic activity. In spite of not presenting efficient antiparasitic activity, these data turned out to be very important to establish a structural activity relationship.


Assuntos
Antiprotozoários/síntese química , Difosfonatos/síntese química , Inibidores Enzimáticos/síntese química , Geraniltranstransferase/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Toxoplasma/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Chlorocebus aethiops , Difosfonatos/farmacologia , Ensaios Enzimáticos , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Halogenação , Humanos , Testes de Sensibilidade Parasitária , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade , Toxoplasma/enzimologia , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento , Células Vero
13.
Eukaryot Cell ; 13(2): 320-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24376001

RESUMO

Ubiquinone 9 (UQ9), the expected product of the long-chain solanesyl diphosphate synthase of Trypanosoma brucei (TbSPPS), has a central role in reoxidation of reducing equivalents in the mitochondrion of T. brucei. The ablation of TbSPPS gene expression by RNA interference increased the generation of reactive oxygen species and reduced cell growth and oxygen consumption. The addition of glycerol to the culture medium exacerbated the phenotype by blocking its endogenous generation and excretion. The participation of TbSPPS in UQ synthesis was further confirmed by growth rescue using UQ with 10 isoprenyl subunits (UQ10). Furthermore, the survival of infected mice was prolonged upon the downregulation of TbSPPS and/or the addition of glycerol to drinking water. TbSPPS is inhibited by 1-[(n-oct-1-ylamino)ethyl] 1,1-bisphosphonic acid, and treatment with this compound was lethal for the cells. The findings that both UQ9 and ATP pools were severely depleted by the drug and that exogenous UQ10 was able to fully rescue growth of the inhibited parasites strongly suggest that TbSPPS and UQ synthesis are the main targets of the drug. These two strategies highlight the importance of TbSPPS for T. brucei, justifying further efforts to validate it as a new drug target.


Assuntos
Alquil e Aril Transferases/metabolismo , Estágios do Ciclo de Vida , Nitrilas/farmacologia , Proteínas de Protozoários/metabolismo , Piridinas/farmacologia , Trypanosoma brucei brucei/enzimologia , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/genética , Animais , Doxiciclina/uso terapêutico , Inibidores Enzimáticos/farmacologia , Glicerol/uso terapêutico , Indóis , Maleimidas , Camundongos , Nitrilas/farmacocinética , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Piridinas/farmacocinética , Espécies Reativas de Oxigênio/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase/tratamento farmacológico , Ubiquinona/biossíntese
14.
Bioorg Med Chem ; 22(1): 398-405, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24300918

RESUMO

As part of our project pointed at the search of new antiparasitic agents against American trypanosomiasis (Chagas disease) and toxoplasmosis a series of 2-alkylaminoethyl-1-hydroxy-1,1-bisphosphonic acids has been designed, synthesized and biologically evaluated against the etiologic agents of these parasitic diseases, Trypanosoma cruzi and Toxoplasma gondii, respectively, and also towards their target enzymes, T. cruzi and T. gondii farnesyl pyrophosphate synthase (FPPS), respectively. Surprisingly, while most pharmacologically active bisphosphonates have a hydroxyl group at the C-1 position, the additional presence of an amino group at C-3 resulted in decreased activity towards either T. cruzi cells or TcFPPS. Density functional theory calculations justify this unexpected behavior. Although these compounds were devoid of activity against T. cruzi cells and TcFPPS, they were efficient growth inhibitors of tachyzoites of T. gondii. This activity was associated with a potent inhibition of the enzymatic activity of TgFPPS. Compound 28 arises as a main example of this family of compounds exhibiting an ED50 value of 4.7 µM against tachyzoites of T. gondii and an IC50 of 0.051 µM against TgFPPS.


Assuntos
Antiparasitários/farmacologia , Difosfonatos/farmacologia , Geraniltranstransferase/química , Toxoplasma/enzimologia , Trypanosoma cruzi/enzimologia , Desenho de Fármacos , Relação Estrutura-Atividade , Toxoplasma/metabolismo , Trypanosoma cruzi/metabolismo
15.
Eur J Med Chem ; 262: 115885, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37871407

RESUMO

The opportunistic apicomplexan parasite Toxoplasma gondii is the etiologic agent for toxoplasmosis, which can infect a widespread range of hosts, particularly humans and warm-blooded animals. The present chemotherapy to treat or prevent toxoplasmosis is deficient and is based on diverse drugs such as atovaquone, trimethoprim, spiramycine, which are effective in acute toxoplasmosis. Therefore, a safe chemotherapy is required for toxoplasmosis considering that its responsible agent, T. gondii, provokes severe illness and death in pregnant women and immunodeficient patients. A certain disadvantage of the available treatments is the lack of effectiveness against the tissue cyst of the parasite. A safe chemotherapy to combat toxoplasmosis should be based on the metabolic differences between the parasite and the mammalian host. This article covers different relevant molecular targets to combat this disease including the isoprenoid pathway (farnesyl diphosphate synthase, squalene synthase), dihydrofolate reductase, calcium-dependent protein kinases, histone deacetylase, mitochondrial electron transport chain, etc.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Humanos , Feminino , Gravidez , Toxoplasmose/tratamento farmacológico , Atovaquona/metabolismo , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Trimetoprima/farmacologia , Mamíferos
16.
PLoS One ; 18(10): e0293359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37878651

RESUMO

Electroactive biofilms formation by the metal-reducing bacterium Geobacter sulfurreducens is a step crucial for bioelectricity generation and bioremediation. The transcriptional regulator GSU1771 controls the expression of essential genes involved in electron transfer and biofilm formation in G. sulfurreducens, with GSU1771-deficient producing thicker and more electroactive biofilms. Here, RNA-seq analyses were conducted to compare the global gene expression patterns of wild-type and Δgsu1771 mutant biofilms grown on non-conductive (glass) and conductive (graphite electrode) materials. The Δgsu1771 biofilm grown on the glass surface exhibited 467 differentially expressed (DE) genes (167 upregulated and 300 downregulated) versus the wild-type biofilm. In contrast, the Δgsu1771 biofilm grown on the graphite electrode exhibited 119 DE genes (79 upregulated and 40 downregulated) versus the wild-type biofilm. Among these DE genes, 67 were also differentially expressed in the Δgsu1771 biofilm grown on glass (56 with the same regulation and 11 exhibiting counter-regulation). Among the upregulated genes in the Δgsu1771 biofilms, we identified potential target genes involved in exopolysaccharide synthesis (gsu1961-63, gsu1959, gsu1972-73, gsu1976-77). RT-qPCR analyses were then conducted to confirm the differential expression of a selection of genes of interest. DNA-protein binding assays demonstrated the direct binding of the GSU1771 regulator to the promoter region of pgcA, pulF, relA, and gsu3356. Furthermore, heme-staining and western blotting revealed an increase in c-type cytochromes including OmcS and OmcZ in Δgsu1771 biofilms. Collectively, our findings demonstrated that GSU1771 is a global regulator that controls extracellular electron transfer and exopolysaccharide synthesis in G. sulfurreducens, which is crucial for electroconductive biofilm development.


Assuntos
Geobacter , Grafite , Grafite/metabolismo , Transporte de Elétrons/genética , Biofilmes , Citocromos/metabolismo , Geobacter/metabolismo , Eletrodos , Oxirredução
17.
Antimicrob Agents Chemother ; 56(8): 4483-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22585217

RESUMO

As part of our efforts aimed at searching for new antiparasitic agents, the effect of representative 2-alkylaminoethyl-1,1-bisphosphonic acids on Trypanosoma cruzi squalene synthase (TcSQS) was investigated. These compounds had proven to be potent inhibitors of T. cruzi. This cellular activity had been associated with an inhibition of the enzymatic activity of T. cruzi farnesyl diphosphate synthase. 2-Alkylaminoethyl-1,1-bisphosphonic acids appear to have a dual action, since they also inhibit TcSQS at the nanomolar range.


Assuntos
Antiparasitários/farmacologia , Difosfonatos/farmacologia , Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Geraniltranstransferase/antagonistas & inibidores , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Antiparasitários/química , Antiparasitários/metabolismo , Doença de Chagas/tratamento farmacológico , Difosfonatos/química , Difosfonatos/metabolismo , Farnesil-Difosfato Farnesiltransferase/metabolismo , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/metabolismo , Trypanosoma cruzi/metabolismo
18.
Org Biomol Chem ; 10(7): 1424-33, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22215028

RESUMO

α-Fluorinated-1,1-bisphosphonic acids derived from fatty acids were designed, synthesized and biologically evaluated against Trypanosoma cruzi, the etiologic agent of Chagas disease, and against Toxoplasma gondii, the agent responsible for toxoplasmosis, and also towards the target parasitic enzymes farnesyl pyrophosphate synthase of T. cruzi (TcFPPS) and T. gondii (TgFPPS). Interestingly, 1-fluorononylidene-1,1-bisphosphonic acid (compound 43) proved to be an extremely potent inhibitor of the enzymatic activity of TgFPPS at the low nanomolar range, exhibiting an IC(50) of 30 nM. This compound was two-fold more potent than risedronate (IC(50) = 74 nM) that was taken as a positive control. This enzymatic activity was associated with a strong cell growth inhibition against tachyzoites of T. gondii, with an IC(50) value of 2.7 µM.


Assuntos
Antiprotozoários/farmacologia , Difosfonatos/farmacologia , Inibidores Enzimáticos/farmacologia , Geraniltranstransferase/antagonistas & inibidores , Toxoplasma/enzimologia , Antiprotozoários/química , Difosfonatos/química , Inibidores Enzimáticos/química , Geraniltranstransferase/metabolismo , Toxoplasma/metabolismo
19.
Sci Rep ; 12(1): 20899, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463258

RESUMO

Microtubules, cylindrical assemblies of tubulin proteins with a 25 nm diameter and micrometer lengths, are a central part of the cytoskeleton and also serve as building blocks for nanobiodevices. Microtubule breaking can result from the activity of severing enzymes and mechanical stress. Breaking can lead to a loss of structural integrity, or an increase in the numbers of microtubules. We observed breaking of taxol-stabilized microtubules in a gliding motility assay where microtubules are propelled by surface-adhered kinesin-1 motor proteins. We find that over 95% of all breaking events are associated with the strong bending following pinning events (where the leading tip of the microtubule becomes stuck). Furthermore, the breaking rate increased exponentially with increasing curvature. These observations are explained by a model accounting for the complex mechanochemistry of a microtubule. The presence of severing enzymes is not required to observe breaking at rates comparable to those measured previously in cells.


Assuntos
Citoesqueleto , Microtúbulos , Tubulina (Proteína) , Cinesinas , Ensaios de Migração Celular , Proteínas de Membrana
20.
Bioorg Med Chem ; 19(7): 2211-7, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21419634

RESUMO

The effect of long-chain 2-alkylaminoethyl-1,1-bisphosphonates against proliferation of the clinically more relevant form of Trypanosoma cruzi, the etiologic agent of American trypanosomiasis (Chagas' disease), and against tachyzoites of Toxoplasma gondii was investigated. Particularly, compound 26 proved to be an extremely potent inhibitor against the intracellular form of T. cruzi, exhibiting IC(50) values at the nanomolar range. This cellular activity was associated with a strong inhibition of the enzymatic activity of T. cruzi farnesyl diphosphate synthase (TcFPPS), which constitutes a valid target for Chagas' disease chemotherapy. Compound 26 was an effective agent against T. cruzi (amastigotes) exhibiting an IC(50) value of 0.67 µM, while this compound showed an IC(50) value of 0.81 µM against the target enzyme TcFPPS. This drug was less effective against the enzymatic activity of T. cruzi solanesyl diphosphate synthase TcSPPS showing an IC(50) value of 3.2 µM. Interestingly, compound 26 was also very effective against T. gondii (tachyzoites) exhibiting IC(50) values of 6.23 µM. This cellular activity was also related to the inhibition of the enzymatic activity towards the target enzyme TgFPPS (IC(50)=0.093 µM) As bisphosphonate-containing compounds are FDA-approved drugs for the treatment of bone resorption disorders, their potential low toxicity makes them good candidates to control different tropical diseases.


Assuntos
Antiprotozoários/química , Difosfonatos/química , Difosfonatos/farmacologia , Inibidores Enzimáticos/química , Geraniltranstransferase/antagonistas & inibidores , Toxoplasma/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Chlorocebus aethiops , Difosfonatos/síntese química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Geraniltranstransferase/metabolismo , Terapia de Alvo Molecular , Relação Estrutura-Atividade , Toxoplasma/enzimologia , Trypanosoma cruzi/enzimologia , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA