Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Phys Chem Chem Phys ; 24(24): 14886-14897, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35674089

RESUMO

The importance of choline chloride (ChCl) is recognized due to its widespread use in the formulation of deep eutectic solvents. The controlled addition of water in deep eutectic solvents has been proposed to overcome some of the major drawbacks of these solvents, namely their high hygroscopicities and viscosities. Recently, aqueous solutions of ChCl at specific mole ratios have been presented as a novel, low viscous deep eutectic solvent. Nevertheless, these proposals are suggested without any information about the solid-liquid phase diagram of this system or the deviations from the thermodynamic ideality of its precursors. This work contributes significantly to this matter as the phase behavior of pure ChCl and (ChCl + H2O) binary mixtures was investigated by calorimetric and analytical techniques. The thermal behavior and stability of ChCl were studied by polarized light optical microscopy and differential scanning calorimetry, confirming the existence of a solid-solid transition at 352.2 ± 0.6 K. Additionally, heat capacity measurements of pure ChCl (covering both ChCl solid phases) and aqueous solutions of ChCl (xChCl < 0.4) were performed using a heat-flow differential scanning microcalorimeter or a high-precision heat capacity drop calorimeter, allowing the estimation of a heat capacity change of (ChCl) ≈ 39.3 ± 10 J K-1 mol-1, between the hypothetical liquid and the observed crystalline phase at 298.15 K. The solid-liquid phase diagram of the ChCl + water mixture was investigated in the whole concentration range by differential scanning calorimetry and the analytical shake-flask method. The phase diagram obtained for the mixture shows an eutectic temperature of 204 K, at a mole fraction of choline chloride close to xChCl = 0.2, and a shift of the solid-solid transition of ChCl-water mixtures of 10 K below the value observed for pure choline chloride, suggesting the appearance of a new crystalline structure of ChCl in the presence of water, as confirmed by X-ray diffraction. The liquid phase presents significant negative deviations to ideality for water while COSMO-RS predicts a near ideal behaviour for ChCl.

2.
J Environ Manage ; 279: 111597, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168294

RESUMO

This work aims to assess the influence of ultrasounds (US) application or ultraviolet (UV) light irradiation on the efficiency and sustainability of the treatment of wastes by conductive diamond electrochemical oxidation (CDEO). To do this, a life cycle assessment (LCA) is carried out in order to quantify the environmental impacts of the intensified CDEO processes. Inventories of three bench scale remediation plants (CDEO, Sono-CDEO and Photo-CDEO) in which the different technologies are implemented are performed by means of Ecoinvent 3.3 data base. AWARE, USEtox, IPPC and ReCiPe methodologies are used to quantify the environmental burden into 5 midpoint (water footprint, global warming 100a, ozone layer depletion, human toxicity, freshwater ecotoxicity) and 17 endpoint impact categories. Photo-CDEO attains the faster and more efficient removal in terms of energy consumed. All impact categories are lower in the case in which UV light irradiation is coupled to the CDEO treatment, particularly if the electrolyte does not contain chloride anions. From the point of view of toxicity and ecotoxicity, it is essential to achieve a complete mineralization, because of the intermediates generated into wastes containing chloride anions can become more hazardous than the initial pesticide. The operation of these technologies at large current densities shows positive results from the sustainability point of view, despite the huge environmental impact related to the energy production. Data notice that almost a 99.0% of the total global warming potential is mainly due to the electricity required during the electrochemical treatment, being higher by the sono and photo CDEO treatments because of the use of additional devices. Nevertheless, this issue can be overcome by means of using renewable energies as power sources of these remediation treatments. According to results, it can be claimed that the electrochemical technologies may successfully compete with other AOPs in terms of sustainability.


Assuntos
Eletrólise , Raios Ultravioleta , Diamante , Eletrólitos , Humanos , Oxirredução
3.
J Environ Manage ; 285: 112064, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33588169

RESUMO

Powering electrochemical technologies with renewable energies is a promising way to get more sustainable environmental remediation techniques. However, the operational conditions of those processes must be optimized to undergo fast and efficient treatments. In this work, the influence of electrical and hydraulic connections in the performance of a set of two electrolyzers directly powered by photovoltaic panels was evaluated. Despite both electrolyzers were assembled using the same electrode material, they showed different performances. Results indicate that the electrolyzer with higher ohmic resistance and higher overpotential attained a greater production of oxidant species, being produced under the most efficient strategy around 4.8 and 15.1 mmol of oxidants per Ah by electrolyzer 1 and 2, respectively. Nevertheless, an excess of oxidant production because of an inefficient energy management, led to low removal efficiencies as a consequence of a waste of energy into undesirable reactions. Regarding the hydraulic distribution of wastewater between the cells, it was found to influence on the total remediation attained, being the serial connection 2.5 and 1.8 more efficient than a parallel wastewater distribution under series and parallel electrical strategies, respectively. Regarding electrical strategies, parallel connections maximize the use of power produced by the photovoltaic panels. Furthermore, this allows the system to work under lower current densities, reducing the mass transfer limitations. Considering both advantages, a hydraulic connection of the cells in series and an electrical connection in parallel was found to reach the highest specific removal of pollutant, 2.52 mg clopyralid (Wh)-1. Conversely, the opposite strategy (parallel hydraulic connection-series electrical connection) showed the lowest remediation ratio, 0.48 mg clopyralid (Wh)-1. These results are important to be considered in the design of electrolytic treatments of waste directly powered by photovoltaic panels, because they show the way to optimize the cells stack layout in full-scale applications, exhibiting significant impact on the sustainability of the electrochemical application.


Assuntos
Recuperação e Remediação Ambiental , Águas Residuárias , Eletricidade , Eletrodos , Eletrólise
4.
J Environ Manage ; 262: 110364, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250826

RESUMO

In this work, a three-step process (adsorption-desorption-electrolysis) is evaluated as an interesting approach for the removal of organochlorinated compounds (clopyralid, lindane and perchloroethylene) with different physical properties (solubility and vapor pressure) from low concentrated wastewater. First steps are based on the adsorptive capacity of granular active carbon (GAC) particles to retain organics and on the solvent capacity of methanol to extract them to concentrated solution and regenerate GAC. In the last step of electrolysis with conductive diamond electrodes, the degradation of pesticide is projected, as well as the recovery of methanol. Results show that clopyralid, lindane and PCE are efficiently retained in GAC, although adsorption efficiency depend on pollutant/GAC ratio and physicochemical properties of pollutant. Pretreatment allows the concentration of clopyralid and PCE solutions up to 8 times, but worse results are obtained in case of lindane solutions. Electrolysis of concentrated methanol solution seems to be more efficient than electrolysis of diluted aqueous wastes, mainly in the case of clopyralid. In all cases, electrochemical degradation fits a first order kinetics confirming mixed oxidation mechanisms with diffusion control of the direct processes and mediated oxidation. Results obtained in terms of current efficiency and energy consumption of electrolysis step point out the lower operation cost of concentrated liquid wastes and encourage further works on the development of cost-effective combined processes for the treatment of diluted solutions polluted with polar compounds (such as clopyralid).


Assuntos
Poluentes Químicos da Água , Adsorção , Eletrodos , Eletrólise , Oxirredução , Águas Residuárias
5.
J Environ Manage ; 265: 110566, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32275236

RESUMO

This work focuses on disinfection of water using electrolysis with diamond coatings avoiding or minimizing the formation of hazardous chlorates and perchlorates using a special type of commercial cells designed by CONDIAS (Itzehoe, Germany) in two different sizes: the CabECO and the MIKROZON cells. In these cells, the electrolyte that separates the anode and cathode is a proton exchange membrane. This helps to minimize the production of perchlorate and this behavior is enhanced in the smallest cell for which the very low contact times between the electrodes and the water allows to avoid the production of perchlorates when operating in a single-pass mode, which becomes a really remarkable point. In this paper, we report tests in which we demonstrate this outstanding performance and we also explain the differences observed in the two cells operating with the same water.


Assuntos
Cloratos , Poluentes Químicos da Água , Diamante , Desinfecção , Eletrodos , Alemanha , Oxirredução , Percloratos
6.
J Environ Manage ; 267: 110665, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421682

RESUMO

The electro-kinetic remediation of soils using different powering strategies has been studied, in order to clarify which is the best strategy to couple solar powering with this remediation technology, in a context of developing more sustainable electrochemical remediation technologies. Direct powering from photovoltaic panels (Case a), application of constant electric fields with the same average value of Case a (Case b) and application of constant specific power with the same average value of Case a (Case c) have been compared. Results show an outstanding influence of the powering strategy on the removal efficiency of clopyralid (model of herbicide used in this work). The direct use of solar power profiles obtained the lowest removal efficiencies, which contrasts with the higher expected sustainability of this powering strategy. Reversion of pollutant transport overnight and extreme electric field values at noon help to explain the lower efficiency of this strategy. Evaporation mechanisms are promoted by operating at extreme large electric fields. In addition, harsher conditions lead to a higher negative soil affectation in terms of regions affected by extreme pHs, water contents and/or conductivities and to lower specific pollutant removals. Therefore, maximum efficiencies were found for Case b (constant electric potential gradient) with a total removal over 110 g kWh-1 and only a slight affectation into the final soil properties.


Assuntos
Recuperação e Remediação Ambiental , Herbicidas , Poluentes do Solo , Energia Solar , Solo
7.
J Environ Manage ; 248: 109289, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31344559

RESUMO

This study deals with the development of efficient and economic electrochemical treatment processes to confront the treatment of liquid wastes containing non-polar organochlorine pesticides. In previous works, it was demonstrated that it is possible to use electrocoagulation (EC) as a concentration technique for a model organochlorine pesticide (oxyfluorfen). Within this framework, the present work describes a process for the degradation of wastes containing non-polar organochlorines (oxyfluorfen or lindane) in two consecutive stages: 1) a first stage of concentration by electrocoagulation; 2) a second stage of electrochemical degradation by electro-oxidation (EO) or electro-Fenton (EF). The first result reached in the present work is that it is possible to remove close to 50% of both pollutants using EO and more that 94% using EF. Additionally, it was proved that the addition of a pre-concentration stage decreases by a factor of 20 the power consumption needed to deplete by EO the same amount of the initial pollutant. Moreover, when EF process is performed to the concentrated stream, the power consumption is further reduced, getting values (for 1-log removal) as low as 14.51 kWh m-3 for oxyfluorfen decrease and 49.7 kWh m-3 for lindane. These results strengthen the fact that the removal efficiency increases with the concentration of the pollutant and demonstrate that the combination of concentration steps and electrochemical degradation technologies is an efficient and promising alternative for the degradation of non-polar organochlorines.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Poluentes Químicos da Água , Técnicas Eletroquímicas , Peróxido de Hidrogênio , Oxirredução
8.
J Environ Manage ; 233: 768-773, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30318156

RESUMO

This work focuses on the evaluation of the electrochemical dewatering of sludge polluted with model hazardous species. To do this, two sludge samples taken from the outlet of the anaerobic digesters of the municipal Wastewater Treatment Facility of Ciudad Real were polluted with herbicide clopyralid (CP) and with antibiotics amoxicillin (AMX) and ampicillin (AMP), respectively. These sludge samples underwent first dewatering by press filtration and then, the dewatering continued by the application of an electrochemically assisted driven process with increasing electric fields (1.0, 2.0 and 3.0 V cm-1). Results demonstrate that the electrochemically-assisted process can help to exhaust the pollutant adsorbed onto the sludge and attain a supplemental removal (up to 15%) of water in both cases. This is a highly important result, because it can help to develop technologies for sludge treatment that avoid the diffusion of hazardous pollution during the land application of the sludge. No reactivity of the pollutants was observed during the tests.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Eletricidade , Filtração , Águas Residuárias , Água
9.
J Environ Manage ; 231: 570-575, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388654

RESUMO

This work presents a techno-economic study of the scaling-up of the electrochemically-assisted soil remediation (EASR) process of polluted soil. Four scales have been selected for the study: laboratory, bench, pilot and prototype, with a capacity of treating a volume of soil of 1 × 10-4, 2 × 10-3, 0.11 and 21.76 m3, respectively. This study analyses the technical information produced by studies carried out at each scale, and informs about the fixed costs (construction of the electrokinetic remediation reactor, installation of auxiliary services and purchase of analytical equipment) and variable costs (start-up, operation and dismantling of the test) derived from running a test at each of the evaluated scales. The information discussed in based on the experience gained with many evaluations carried out over the last decade at these scales. This information can provide useful guidance for developing a scaling-up of the EASR for many researchers starting on the evaluation of this important environmental remediation technology.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Poluição Ambiental , Solo
10.
J Environ Manage ; 222: 135-140, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29807263

RESUMO

This work presents the design and evaluation of a new concept of pre-disinfection treatment that is especially suited for highly polluted surface water and is based on the combination of coagulation-flocculation, lamellar sedimentation and filtration into a single-column unit, in which the interconnection between treatments is an important part of the overall process. The new system, the so-called PREDICO (PRE-DIsinfection Column) system, was built with low-cost consumables from hardware stores (in order to promote in-house construction of the system in poor countries) and was tested with a mixture of 20% raw wastewater and 80% surface water (in order to simulate an extremely bad situation). The results confirmed that the PREDICO system helps to avoid fouling in later electro-disinfection processes and attains a remarkable degree of disinfection (3-4 log units), which supplements the removal of pathogens attained by the electrolytic cell (more than 4 log units). The most important sizing parameters for the PREDICO system are the surface loading rate (SLR) and the hydraulic residence time (HRT); SLR values under 20 cm min-1 and HRT values over 13.6 min in the PREDICO system are suitable to warrant efficient performance of the system.


Assuntos
Águas Residuárias , Purificação da Água , Desinfecção , Filtração , Poluição da Água
11.
J Environ Manage ; 195(Pt 2): 216-223, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27530074

RESUMO

Wastewater produced in pharmaceutical manufacturing plants (PMPs), especially the one coming from organic-synthesis facilities, is characterized by its large variability due to the wide range of solvents and chemical reagents used in the different stages of the production of medicines. Normally, the toxicity of the organic compounds prevent the utilization of biological processes and more powerful treatments are needed becoming advanced oxidation processes (AOPs) a valid alternative. In this work, the efficiency in abatement of pollution by Fenton oxidation (FO) and conductive-diamond electro-oxidation (CDEO) are compared in the treatment of 60 real effluents coming from different processes carried out in a pharmaceutical facility, using standardized tests. In 80% of the samples, CDEO was found to be more efficient than FO and in the remaining 20%, coagulation was found to exhibit a great significance in the COD abatement mechanism during FO, pointing out the effectiveness of the oxidation promoted by the electrochemical technology. Mean oxidation state of carbon was found to be a relevant parameter to understand the behavior of the oxidation technologies. It varied inversely proportional to efficiency in FO and it showed practically no influence in the case of CDEO.


Assuntos
Diamante/química , Eliminação de Resíduos Líquidos , Indústria Farmacêutica , Peróxido de Hidrogênio/química , Ferro/química , Oxirredução , Poluentes Químicos da Água
12.
J Environ Manage ; 171: 128-132, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26861224

RESUMO

In this work, it is studied a wind-powered electrokinetic soil flushing process for the removal of pesticides from soil. This approach aims to develop an eco-friendly electrochemical soil treatment technique and to face the in-situ treatment of polluted soils at remote locations. Herbicide 2,4 dichlorophenoxyacetic acid (2,4-D) is selected as a model pollutant for the soil treatment tests. The performance of the wind-powered process throughout a 15 days experiment is compared to the same remediation process powered by a conventional DC power supply. The wind-powered test covered many different wind conditions (from calm to near gale), being performed 20.7% under calm conditions and 17% under moderate or gentle breeze. According to the results obtained, the wind-powered soil treatment is feasible, obtaining a 53.9% removal of 2,4-D after 15 days treatment. Nevertheless, the remediation is more efficient if it is fed by a constant electric input (conventional DC power supply), reaching a 90.2% removal of 2,4-D with a much lower amount of charge supplied (49.2 A h kg(-1) and 4.33 A h kg(-1) for wind-powered and conventional) within the same operation time.


Assuntos
Ácido 2,4-Diclorofenoxiacético/análise , Técnicas Eletroquímicas/métodos , Recuperação e Remediação Ambiental/métodos , Herbicidas/análise , Poluentes do Solo/análise , Vento , Concentração de Íons de Hidrogênio , Solo/química
13.
J Environ Manage ; 158: 36-9, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25950835

RESUMO

In the search for greener treatment technologies, this work studies the coupling of a wind turbine energy supply with an electrolytic cell (CWTEC device) for the remediation of wastewater polluted with pesticide 2,4-dichlorophenoxyacetic acid (2,4-D). The discontinuous and unforeseeable supply of energy is the main challenge inspiring this new proposal, which aims at reducing the environmental impact of electrolytic treatment by using a green energy supply. The results obtained using the coupled technologies are compared with those obtained by powering the electrolyser with a traditional power supply with a similar current intensity. The mineralisation of wastewater can be accomplished independently of how the electrolytic cell is powered, although differences in performance are clearly observed in the total organic carbon (TOC) and 2,4-D decays. These changes can be explained in terms of the changing profile of the current intensity, which influences the concentrations of the oxidants produced and thereby the mediated electrolytic process.


Assuntos
Técnicas Eletroquímicas , Herbicidas/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Vento , Boro , Diamante , Eletrodos , Humanos
14.
Sci Total Environ ; 927: 172287, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38593877

RESUMO

In this study, the sustainability of the electrokinetic remediation soil flushing (EKSFs) process integrated without and with adsorption barriers (EKABs) have been evaluated for the treatment of four soils contaminated with Atrazine, Oxyfluorfen, Chlorosulfuron and 2,4-D. To this purpose, the environmental effects of both procedures (EKSFs and EKABs) have been determined through a life cycle assessment (LCA). SimaPro 9.3.0.3 was used as software tool and Ecoinvent 3.3 as data base to carry out the inventory of the equipment of each remediation setup based on experimental measurements. The environmental burden was quantified using the AWARE, USEtox, IPPC, and ReCiPe methods into 3 Endpoint impact categories (and damage to human health, ecosystem and resources) and 7 Midpoints impact categories (water footprint, global warming potential, ozone depletion, human toxicity (cancer and human non-cancer), freshwater ecotoxicity and terrestrial ecotoxicity). In general terms, the energy applied to treatment (using the Spanish energy mix) was the parameter with the greatest influence on the carbon footprint, ozone layer depletion and water footprint accounting for around 70 % of the overall impact contribution. On the other hand, from the point of view of human toxicity and freshwater ecotoxicity of soil treatments with 32 mg kg-1 of the different pesticides, the EKSF treatment is recommended for soils with Chlorosulfuron. In this case, the carbon footprint and water footprint reached values around 0.36 kg of CO2 and 114 L of water per kg of dry soil, respectively. Finally, a sensitivity analysis was performed assuming different scenarios.


Assuntos
Recuperação e Remediação Ambiental , Herbicidas , Poluentes do Solo , Herbicidas/análise , Poluentes do Solo/análise , Recuperação e Remediação Ambiental/métodos , Adsorção , Solo/química , Agricultura/métodos
15.
J Phys Chem B ; 128(15): 3742-3754, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38573787

RESUMO

The thermodynamic properties of ionic liquids (ILs) bearing alkylsilane and alkylsiloxane chains, as well as their carbon-based analogs, were investigated. Effects such as the replacement of carbon atoms by silicon atoms, the introduction of a siloxane linkage, and the length of the alkylsilane chain were explored. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to study the thermal and phase behavior (glass transition temperature, melting point, enthalpy and entropy of fusion, and thermal stability). Heat capacity was obtained by high-precision drop calorimetry and differential scanning microcalorimetry. The volatility and cohesive energy of these ILs were investigated via the Knudsen effusion method coupled with a quartz crystal microbalance (KEQCM). Gas phase energetics and structure were also studied to obtain the gas phase heat capacity as well as the energy profile associated with the rotation of the IL side chain. The computational study suggested the existence of an intramolecular interaction in the alkylsiloxane-based IL. The obtained glass transition temperatures seem to follow the trend of chain flexibility. An increase of the alkylsilane chain leads to a seemingly linear increase in molar heat capacity. A regular increment of 30 J·K-1·mol-1 in the molar heat capacity was found for the replacement of carbon by silicon in the IL alkyl chain. The alkylsilane series was revealed to be slightly more volatile than its carbon-based analogs. A further increase in volatility was found for the alkylsiloxane-based IL, which is likely related to the decrease of the cohesive energy due to the existence of an intramolecular interaction between the siloxane linkage and the imidazolium headgroup. The use of Si in the IL structure is a suitable way to significantly reduce the IL's viscosity while preserving its large liquid range (low melting point and high thermal stability) and low volatilities.

16.
Sci Total Environ ; 873: 162359, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822429

RESUMO

Organic and microbial contaminants of emerging concern (CECs), even though not yet regulated, are of great concern in reclaimed water reuse projects. Due to the large number of CECs and their different characteristics, it is useful to include only a limited number of them in monitoring programs. The selection of the most representative CECs is still a current and open question. This study presents a new methodology for this scope, in particular for the evaluation of the performance of a polishing treatment and the assessment of the risk for the environment and the irrigated crops. As to organic CECs, the methodology is based on four criteria (occurrence, persistence, bioaccumulation and toxicity) expressed in terms of surrogates (respectively, concentrations in the secondary effluent, removal achieved in conventional activated sludge systems, Log Kow and predicted-no-effect concentration). It consists of: (i) development of a dataset including the CECs found in the secondary effluent, together with the corresponding values of surrogates found in the literature or by in-field investigations; (ii) normalization step with the assignment of a score between 1 (low environmental impact) and 5 (high environmental impact) to the different criteria based on threshold values set according to the literature and experts' judgement; (iii) CEC ranking according to their final score obtained as the sum of the specific scores; and (iv) selection of the representative CECs for the different needs. Regarding microbial CECs, the selection is based on their occurrence and their highest detection frequency in the secondary effluent and in the receiving water, the antibiotic consumption patterns, and recommendations by national and international organisations. The methodology was applied within the ongoing reuse project SERPIC resulting in a list of 30 indicator CECs, including amoxicillin, bisphenol A, ciprofloxacin, diclofenac, erythromycin, ibuprofen, iopromide, perfluorooctane sulfonate (PFOS), sulfamethoxazole, tetracycline, Escherichia coli, faecal coliform, 16S rRNA, sul1, and sul2.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Água , RNA Ribossômico 16S , Poluentes Químicos da Água/análise , Esgotos , Antibacterianos
17.
Chemosphere ; 287(Pt 3): 132334, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34563766

RESUMO

In previous works, a low-cost predisinfection column that combined coagulation-flocculation and GAC filtration was proposed for combination with electrodisinfection in the successful treatment of highly faecal polluted surface water. In this work, this column is adapted for the treatment of pore water by transforming the coagulation chamber into a chemical reactor with lime and replacing the GAC of the filter with ion exchange resins. This adapted system can soften water, remove nitrate and condition water for very efficient electrochemical disinfection, where 4 logs and 3 logs in the removal of E. coli and P. aeruginosa, respectively, were reached using commercial electrochemical cells, i.e., CabECO ® or MIKROZON®. The availability and low cost of the technology are strong points for usage in poor areas of developing countries.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Escherichia coli , Filtração , Poluentes Químicos da Água/análise
18.
Sci Total Environ ; 803: 149991, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482137

RESUMO

The green powering of electrochemically-assisted soil remediation processes had been strongly discouraged. Low remediation efficiencies have been reported as a consequence of the reversibility of the transport processes when no power is applied to the electrodes, due to the intermittent powering of renewable sources. However, it has been missed a deeper evaluation from the environmental point of view. This work goes further and seeks to quantify, using life cycle assessment tools, the environmental impacts related to the electro-kinetic treatments powered by different sources: grid (Spanish energy mix), photovoltaic and wind sources. The global warming potential and the ozone depletion showed higher environmental impacts in case of using green energies, associated with the manufacturing of the energy production devices. In contrast to that, results pointed out the lowest water consumption for the treatment powered with solar panels. The huge water requirements to produce energy, considering a Spanish energy mix, drop the sustainability of this powering strategy in terms of water footprint. Regarding toxicities, the pollutant toxicity was highly got rid of after 15 days of treatment, regardless the powering source used. Nevertheless, the manufacturing of energy and green energy production devices has a huge impact into the toxicity of the remediation treatments, increasing massively the total toxicity of the process, being this effect less prominent by the electro-kinetic treatment solar powered. In view of the overall environmental impact assessed, according to mid and endpoint impact categories, it can be claimed that, despite the high energy requirements and affectation to the global warming potential, the use of solar power is a more sustainable alternative to remediate polluted soils by electrochemical techniques.


Assuntos
Recuperação e Remediação Ambiental , Energia Solar , Fontes de Energia Elétrica , Meio Ambiente , Solo , Vento
19.
Chemosphere ; 289: 133141, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34871614

RESUMO

This work focuses on increasing the TRL of electro-ozonizer technology by evaluating the effect of electrolyte composition and operation conditions on the production of ozone, using an actual commercial cell, CONDIAPURE®, in conditions similar to what could be expected in a real application. Not only is attention paid to the changes in the concentration of ozone in the liquid phase, but also to those observed in the gas phase. The electrolyte and its recirculation flowrate, as well as operation temperatures and pressures are found to have significant influence on production rates. The most efficient way to produce ozone is operating at low temperatures and high pressures. In this work, 0.25 and 0.21 mg O3/min were obtained operating at 10 A in electrolytes consisting of aqueous solutions of perchloric and sulfuric acid, respectively, in tests carried out at 13 °C and 2 bars of gauge pressure. The negative effect of scavengers that appear electrochemically along the production of ozone is very important and seems to be partially compensated when organics are present in the solution due to the competition between the reaction of these scavengers with ozone or organics.


Assuntos
Ozônio , Poluentes Químicos da Água , Tecnologia , Temperatura , Água , Poluentes Químicos da Água/análise
20.
Am J Infect Control ; 50(8): 898-905, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35908829

RESUMO

BACKGROUND: Adherence to infection prevention and control (IPC) measures, including the proper use of protective personal equipment (PPE), in health care is complex and is influenced by many factors. Isolated interventions do not have the potential to achieve optimal PPE adherence and appropriate provision, leading to incomplete PPE implementation. OBJECTIVE: To map PPE implementation in health care with a focus on its barriers and facilitators. METHODS: A scoping review was conducted across 14 electronic databases using the Joanna Briggs Institute methodology. RESULTS: Seventy-four papers were included in the review. Findings were analyzed and synthesized into categories to match the Consolidated Framework for Implementation Research domains. The content was then synthesized into barriers for PPE implementation and interventions to address them. The main barriers were discomfort in clinical work; shortage, supply and logistics problems; inadequacies in facilities infrastructure, weakness in policies and communication procedures; and health workers' (HW) psychological issues and lack of preparedness. Implementation interventions reported were related to HW wellbeing assurance; work reorganization; IPC protocols; adoption of strategies to improve communication and HW training; and adoption of structural and organizational changes to improve PPE adherence. CONCLUSIONS: PPE implementation, which is critical IPC programs, involves multilevel transdisciplinary complexity. It relies on the development of context-driven implementation strategies to inform and harmonize IPC policy in collaboration with local and international health bodies.


Assuntos
Pessoal de Saúde , Equipamento de Proteção Individual , Atenção à Saúde , Instalações de Saúde , Pessoal de Saúde/psicologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA