Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 32(7): 3518-3535, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29405094

RESUMO

BCL2-associated athanogene (BAG)-3 is viewed as a platform that would physically and functionally link distinct classes of molecular chaperones of the heat shock protein (HSP) family for the stabilization and clearance of damaged proteins. In this study, we show that HSPB8, a member of the small heat shock protein subfamily, cooperates with BAG3 to coordinate the sequestration of harmful proteins and the cellular adaptive response upon proteasome inhibition. Silencing of HSPB8, like depletion of BAG3, inhibited targeting of ubiquitinated proteins to the juxtanuclear aggresome, a mammalian system of spatial quality control. However, aggresome targeting was restored in BAG3-depleted cells by a mutant BAG3 defective in HSPB8 binding, uncoupling HSPB8 function from its binding to BAG3. Depletion of HSPB8 impaired formation of ubiquitinated microaggregates in an early phase and interfered with accurate modifications of the stress sensor p62/sequestosome (SQSTM)-1. This impairment correlated with decreased coupling of BAG3 to p62/SQSTM1 in response to stress, hindering Kelch-like ECH-associated protein (KEAP)-1 sequestration and stabilization of nuclear factor E2-related factor (Nrf)-2, an important arm of the antioxidant defense. Notably, the myopathy-associated mutation of BAG3 (P209L), which lies within the HSPB8-binding motif, deregulated the association between BAG3 and p62/SQSTM1 and the KEAP1-Nrf2 signaling axis. Together, our findings support a so-far-unrecognized role for the HSPB8-BAG3 connection in mounting of an efficient stress response, which may be involved in BAG3-related human diseases.-Guilbert, S. M., Lambert, H., Rodrigue, M.-A., Fuchs, M., Landry, J., Lavoie, J. N. HSPB8 and BAG3 cooperate to promote spatial sequestration of ubiquitinated proteins and coordinate the cellular adaptive response to proteasome insufficiency.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Choque Térmico/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitinação , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Sítios de Ligação , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Chaperonas Moleculares , Mutação , Fator 2 Relacionado a NF-E2/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Proteína Sequestossoma-1/metabolismo
2.
Cells ; 10(10)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34685619

RESUMO

The cochaperone BCL2-associated athanogene 3 (BAG3), in complex with the heat shock protein HSPB8, facilitates mitotic rounding, spindle orientation, and proper abscission of daughter cells. BAG3 and HSPB8 mitotic functions implicate the sequestosome p62/SQSTM1, suggesting a role for protein quality control. However, the interplay between this chaperone-assisted pathway and the mitotic machinery is not known. Here, we show that BAG3 phosphorylation at the conserved T285 is regulated by CDK1 and activates its function in mitotic cell shape remodeling. BAG3 phosphorylation exhibited a high dynamic at mitotic entry and both a non-phosphorylatable BAG3T285A and a phosphomimetic BAG3T285D protein were unable to correct the mitotic defects in BAG3-depleted HeLa cells. We also demonstrate that BAG3 phosphorylation, HSPB8, and CDK1 activity modulate the molecular assembly of p62/SQSTM1 into mitotic bodies containing K63 polyubiquitinated chains. These findings suggest the existence of a mitotically regulated spatial quality control mechanism for the fidelity of cell shape remodeling in highly dividing cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Quinase CDC2/metabolismo , Forma Celular , Corpos de Inclusão/metabolismo , Mitose , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/química , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Fosforilação , Fosfosserina/metabolismo
3.
Cell Cycle ; 19(22): 2963-2981, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33103553

RESUMO

The human adenovirus (Ad) type 2/5 early region 4 (E4) ORF4 protein (E4orf4) exerts a remarkable tumor cell-selective killing activity in mammalian cells. This indicates that E4orf4 can target tumor cell-defining features and is a unique tool to probe cancer cell vulnerabilities. Recently, we found that E4orf4, through an interaction with the polarity protein PAR3, subverts nuclear envelope (NE) remodeling processes in a tumor cell-selective manner. In this Perspective, we outline mechanical signals that modify nuclear dynamics and tumor cell behavior to highlight potential mechanisms for E4orf4's tumoricidal activity. Through an analysis of E4orf4's cellular targets, we define a protein subnetwork that comprises phosphatase systems interconnected to polarity protein hubs, which could contribute to enhanced NE plasticity. We infer that elucidating E4orf4's protein network at a functional level could uncover key mechanisms of NE remodeling that define the tumor cell phenotype.


Assuntos
Carcinogênese/metabolismo , Neoplasias/metabolismo , Membrana Nuclear/metabolismo , Estresse Mecânico , Proteínas Virais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Drosophila/metabolismo , Via de Sinalização Hippo/metabolismo , Humanos , Neoplasias/patologia , Fenótipo , Mapas de Interação de Proteínas , Proteína Fosfatase 2/metabolismo
4.
J Cell Biol ; 219(4)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32328642

RESUMO

The tumor cell-selective killing activity of the adenovirus type 2 early region 4 ORF4 (E4orf4) protein is poorly defined at the molecular level. Here, we show that the tumoricidal effect of E4orf4 is typified by changes in nuclear dynamics that depend on its interaction with the polarity protein Par3 and actomyosin contractility. Mechanistically, E4orf4 induced a high incidence of nuclear bleb formation and repetitive nuclear ruptures, which promoted nuclear efflux of E4orf4 and loss of nuclear integrity. This process was regulated by nucleocytoskeletal connections, Par3 clustering proximal to nuclear lamina folds, and retrograde movement of actin bundles that correlated with nuclear ruptures. Significantly, Par3 also regulated the incidence of spontaneous nuclear ruptures facilitated by the downmodulation of lamins. This work uncovered a novel role for Par3 in controlling the actin-dependent forces acting on the nuclear envelope to remodel nuclear shape, which might be a defining feature of tumor cells that is harnessed by E4orf4.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas Virais/metabolismo , Morte Celular , Células HEK293 , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA