Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Orthop Surg (Hong Kong) ; 28(2): 2309499020939737, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32715928

RESUMO

The use of human tissue-derived autografts and allografts continues to be the gold standard in anterior cruciate ligament (ACL) repair. However, autografts and allografts have their own set of associated risks. Many alternative options, including synthetic replacements, have failed to demonstrate long-term success. In this study, sterile acellular porcine bone-tendon-bone (BTB) xenografts were created using a proprietary process and tested against BTB autografts in goats for 13 and 52 weeks. At 13 weeks, all xenograft-implanted animals (n = 9) had subjective hind leg motor function (HLMF) that was categorized as either normal (score = 0) or a slight limp (score = 1) compared with two of nine autograft-implanted animals having a moderate limp (score = 2). At 39 weeks, there was HLMF improvement with each autograft-implanted and xenograft-implanted animal having normal HLMF or only a slight limp. At 13 weeks, six of nine animals in each group achieved normal anterior drawer scores, which increased to nine of nine animals in each group by 39 weeks. Both autografts and xenografts exhibited minimal inflammation with excellent integration of the fibrous tendon portion of the graft to host bone, as evidenced histologically by Sharpey's fiber formation. At 52 weeks, maximum mechanical load at failure for xenografts was 1092.0 ± 586.4 N compared with 1037.0 ± 422.6 N for autografts. These results demonstrate that a sterile acellular porcine BTB xenograft can perform equivalently to BTB autograft in a caprine model of ACL repair.


Assuntos
Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Ligamento Cruzado Anterior/cirurgia , Enxerto Osso-Tendão Patelar-Osso/métodos , Ligamento Patelar/transplante , Animais , Modelos Animais de Doenças , Feminino , Cabras , Xenoenxertos , Masculino , Suínos
2.
J Tissue Eng ; 4: 2041731413490182, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23730500

RESUMO

The purpose of this study was to assess the biological revitalization and mechanical integrity of Strattice(™) Reconstructive Tissue Matrix, a porcine-derived acellular dermal matrix, in vivo over time. We expanded the traditional subcutaneous model to incorporate biologic matrix scaffolds large enough to allow evaluation of mechanical properties in addition to the assessment of histological changes. Hematoxylin and eosin histology staining was used to evaluate cellular and tissue changes, and a mechanical testing frame was used to measure the ultimate tensile stress and Young's modulus of the implanted material over time. Cell infiltration and blood vessel formation into the porcine-derived acellular dermal matrix were evident at 2 weeks and increased with implantation time. Mechanical remodeling resulted in an initial decrease in ultimate tensile stress, not associated with cell infiltration, followed by a significant increase in material strength, concurrent with histological evidence of new collagen synthesis. Young's modulus followed a similar trend.

3.
J Tissue Eng ; 4: 2041731413508771, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24555008

RESUMO

We compared fascial wounds repaired with non-cross-linked intact porcine-derived acellular dermal matrix versus primary closure in a large-animal hernia model. Incisional hernias were created in Yucatan pigs and repaired after 3 weeks via open technique with suture-only primary closure or intraperitoneally placed porcine-derived acellular dermal matrix. Progressive changes in mechanical and biological properties of porcine-derived acellular dermal matrix and repair sites were assessed. Porcine-derived acellular dermal matrix-repaired hernias of additional animals were evaluated 2 and 4 weeks post incision to assess porcine-derived acellular dermal matrix regenerative potential and biomechanical changes. Hernias repaired with primary closure showed substantially more scarring and bone hyperplasia along the incision line. Mechanical remodeling of porcine-derived acellular dermal matrix was noted over time. Porcine-derived acellular dermal matrix elastic modulus and ultimate tensile stress were similar to fascia at 6 weeks. The biology of porcine-derived acellular dermal matrix-reinforced animals was more similar to native abdominal wall versus that with primary closure. In this study, porcine-derived acellular dermal matrix-reinforced repairs provided more complete wound healing response compared with primary closure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA