Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Transplant ; 24(7): 1161-1171, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692412

RESUMO

In this proof-of-concept study, spatial transcriptomics combined with public single-cell ribonucleic acid-sequencing data were used to explore the potential of this technology to study kidney allograft rejection. We aimed to map gene expression patterns within diverse pathologic states by examining biopsies classified across nonrejection, T cell-mediated acute rejection, interstitial fibrosis, and tubular atrophy. Our results revealed distinct immune cell signatures, including those of T and B lymphocytes, monocytes, mast cells, and plasma cells, and their spatial organization within the renal interstitium. We also mapped chemokine receptors and ligands to study immune cell migration and recruitment. Finally, our analysis demonstrated differential spatial enrichment of transcription signatures associated with kidney allograft rejection across various biopsy regions. Interstitium regions displayed higher enrichment scores for rejection-associated gene expression patterns than tubular areas, which had negative scores. This implies that these signatures are primarily driven by processes unfolding in the renal interstitium. Overall, this study highlights the value of spatial transcriptomics for revealing cellular heterogeneity and immune signatures in renal transplant biopsies and demonstrates its potential for studying the molecular and cellular mechanisms associated with rejection. However, certain limitations must be borne in mind regarding the development and future applications of this technology.


Assuntos
Rejeição de Enxerto , Transplante de Rim , Estudo de Prova de Conceito , Transcriptoma , Rejeição de Enxerto/patologia , Rejeição de Enxerto/genética , Rejeição de Enxerto/etiologia , Transplante de Rim/efeitos adversos , Humanos , Perfilação da Expressão Gênica , Prognóstico , Sobrevivência de Enxerto/imunologia , Biomarcadores/metabolismo , Aloenxertos
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159528, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38936507

RESUMO

Inflammatory Bowel Disease (IBD) comprises a heterogeneous group of chronic inflammatory conditions of the gastrointestinal tract that include ulcerative colitis (UC) and Crohn's disease. Although the etiology is not well understood, IBD is characterized by a loss of the normal epithelium homeostasis that disrupts the intestinal barrier of these patients. Previous work by our group demonstrated that epithelial homeostasis along the colonic crypts involves a tight regulation of lipid profiles. To evaluate whether lipidomic profiles conveyed the functional alterations observed in the colonic epithelium of IBD, we performed matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) analyses of endoscopic biopsies from inflamed and non-inflamed segments obtained from UC patients. Our results indicated that lipid profiling of epithelial cells discriminated between healthy and UC patients. We also demonstrated that epithelial cells of the inflamed mucosa were characterized by a decrease in mono- and di-unsaturated fatty acid-containing phospholipids and higher levels of arachidonic acid-containing species, suggesting an alteration of the lipid gradients occurring concomitantly to the epithelial differentiation. This result was reinforced by the immunofluorescence analysis of EPHB2 and HPGD, markers of epithelial cell differentiation, sustaining that altered lipid profiles were at least partially due to a faulty differentiation process. Overall, our results showed that lipid profiling by MALDI-MSI faithfully conveys molecular and functional alterations associated with the inflamed epithelium, providing the foundation for a novel molecular characterization of UC patients.


Assuntos
Diferenciação Celular , Colo , Humanos , Colo/metabolismo , Colo/patologia , Masculino , Feminino , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Pessoa de Meia-Idade , Adulto , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Lipidômica/métodos , Enterócitos/metabolismo , Enterócitos/patologia , Metabolismo dos Lipídeos , Inflamação/metabolismo , Inflamação/patologia , Lipídeos/análise , Células Epiteliais/metabolismo , Células Epiteliais/patologia
3.
Biomed Pharmacother ; 174: 116492, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537579

RESUMO

Targeting epigenetic mechanisms has emerged as a potential therapeutic approach for the treatment of kidney diseases. Specifically, inhibiting the bromodomain and extra-terminal (BET) domain proteins using the small molecule inhibitor JQ1 has shown promise in preclinical models of acute kidney injury (AKI) and chronic kidney disease (CKD). However, its clinical translation faces challenges due to issues with poor pharmacokinetics and side effects. Here, we developed engineered liposomes loaded with JQ1 with the aim of enhancing kidney drug delivery and reducing the required minimum effective dose by leveraging cargo protection. These liposomes efficiently encapsulated JQ1 in both the membrane and core, demonstrating superior therapeutic efficacy compared to freely delivered JQ1 in a mouse model of kidney ischemia-reperfusion injury. JQ1-loaded liposomes (JQ1-NPs) effectively targeted the kidneys and only one administration, one-hour after injury, was enough to decrease the immune cell (neutrophils and monocytes) infiltration to the kidney-an early and pivotal step to prevent damage progression. By inhibiting BRD4, JQ1-NPs suppress the transcription of pro-inflammatory genes, such as cytokines (il-6) and chemokines (ccl2, ccl5). This success not only improved early the kidney function, as evidenced by decreased serum levels of BUN and creatinine in JQ1-NPs-treated mice, along with reduced tissue expression of the damage marker, NGAL, but also halted the production of extracellular matrix proteins (Fsp-1, Fn-1, α-SMA and Col1a1) and the fibrosis development. In summary, this work presents a promising nanotherapeutic strategy for AKI treatment and its progression and provides new insights into renal drug delivery.


Assuntos
Azepinas , Proteínas que Contêm Bromodomínio , Progressão da Doença , Rim , Lipossomos , Camundongos Endogâmicos C57BL , Proteínas Nucleares , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Triazóis , Animais , Azepinas/farmacologia , Azepinas/administração & dosagem , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Triazóis/farmacologia , Triazóis/administração & dosagem , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/patologia , Camundongos , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Masculino , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Modelos Animais de Doenças , Nanopartículas , Proteínas de Ciclo Celular/antagonistas & inibidores
4.
Int J Biol Sci ; 20(5): 1547-1562, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481808

RESUMO

Renal ischemia-reperfusion injury (IRI) leads to endoplasmic reticulum (ER) stress, thereby initiating the unfolded protein response (UPR). When sustained, this response may trigger the inflammation and tubular cell death that acts to aggravate the damage. Here, we show that knockdown of the BET epigenetic reader BRD4 reduces the expression of ATF4 and XBP1 transcription factors under ER stress activation. BRD4 is recruited to the promoter of these highly acetylated genes, initiating gene transcription. Administration of the BET protein inhibitor, JQ1, one hour after renal damage induced by bilateral IRI, reveals reduced expression of ATF4 and XBP1 genes, low KIM-1 and NGAL levels and recovery of the serum creatinine and blood urea nitrogen levels. To determine the molecular pathways regulated by ATF4 and XBP1, we performed stable knockout of both transcription factors using CRISPR-Cas9 and RNA sequencing. The pathways triggered under ER stress were mainly XBP1-dependent, associated with an adaptive UPR, and partially regulated by JQ1. Meanwhile, treatment with JQ1 downmodulated most of the pathways regulated by ATF4 and related to the pathological processes during exacerbated UPR activation. Thus, BRD4 inhibition could be useful for curbing the maladaptive UPR activation mechanisms, thereby ameliorating the progression of renal disease.


Assuntos
Antineoplásicos , Traumatismo por Reperfusão , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Nucleares/genética , Estresse do Retículo Endoplasmático/genética , Resposta a Proteínas não Dobradas , Antineoplásicos/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA