Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34577130

RESUMO

One in five cancers is attributed to infectious agents, and the extent of the impact on the initiation, progression, and disease outcomes may be underestimated. Infection-associated cancers are commonly attributed to viral, and to a lesser extent, parasitic and bacterial etiologies. There is growing evidence that microbial community variation rather than a single agent can influence cancer development, progression, response to therapy, and outcome. We evaluated microbial sequences from a subset of infection-associated cancers-namely, head and neck squamous cell carcinoma (HNSC), liver hepatocellular carcinoma (LIHC), and stomach adenocarcinoma (STAD) from The Cancer Genome Atlas (TCGA). A total of 470 paired tumor and adjacent normal samples were analyzed. In STAD, concurrent presence of EBV and Selemonas sputigena with a high diversity index were associated with poorer survival (HR: 2.23, 95% CI 1.26-3.94, p = 0.006 and HR: 2.31, 95% CI 1.1-4.9, p = 0.03, respectively). In LIHC, lower microbial diversity was associated with poorer overall survival (HR: 2.57, 95% CI: 1.2, 5.5, p = 0.14). Bacterial within-sample diversity correlates with overall survival in infection-associated cancers in a subset of TCGA cohorts.


Assuntos
Neoplasias Hepáticas , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Gástricas , Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico
2.
BMC Bioinformatics ; 21(Suppl 9): 523, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33272199

RESUMO

Cancer is one of the leading causes of morbidity and mortality in the globe. Microbiological infections account for up to 20% of the total global cancer burden. The human microbiota within each organ system is distinct, and their compositional variation and interactions with the human host have been known to attribute detrimental and beneficial effects on tumor progression. With the advent of next generation sequencing (NGS) technologies, data generated from NGS is being used for pathogen detection in cancer. Numerous bioinformatics computational frameworks have been developed to study viral information from host-sequencing data and can be adapted to bacterial studies. This review highlights existing popular computational frameworks that utilize NGS data as input to decipher microbial composition, which output can predict functional compositional differences with clinically relevant applicability in the development of treatment and prevention strategies.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/genética , Neoplasias/microbiologia , Especificidade de Órgãos/genética , Biologia Computacional , Humanos
3.
Comput Struct Biotechnol J ; 18: 631-641, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257046

RESUMO

Identification of microbial composition directly from tumor tissue permits studying the relationship between microbial changes and cancer pathogenesis. We interrogated bacterial presence in tumor and adjacent normal tissue strictly in pairs utilizing human whole exome sequencing to generate microbial profiles. Profiles were generated for 813 cases from stomach, liver, colon, rectal, lung, head & neck, cervical and bladder TCGA cohorts. Core microbiota examination revealed twelve taxa to be common across the nine cancer types at all classification levels. Paired analyses demonstrated significant differences in bacterial shifts between tumor and adjacent normal tissue across stomach, colon, lung squamous cell, and head & neck cohorts, whereas little or no differences were evident in liver, rectal, lung adenocarcinoma, cervical and bladder cancer cohorts in adjusted models. Helicobacter pylori in stomach and Bacteroides vulgatus in colon were found to be significantly higher in adjacent normal compared to tumor tissue after false discovery rate correction. Computational results were validated with tissue from an independent population by species-specific qPCR showing similar patterns of co-occurrence among Fusobacterium nucleatum and Selenomonas sputigena in gastric samples. This study demonstrates the ability to identify bacteria differential composition derived from human tissue whole exome sequences. Taken together our results suggest the microbial profiles shift with advanced disease and that the microbial composition of the adjacent tissue can be indicative of cancer stage disease progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA