Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 123: 124-130, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33757694

RESUMO

The nuclear envelope surrounds the eukaryotic genome and, through the nuclear pore complexes, regulates transport in and out of the nucleus. Correct nucleo-cytoplasm compartmentations are essential for nuclear functions such as DNA replication or repair. During metazoan mitosis, the nuclear envelope disintegrates to allow the segregation of the two copies of DNA between daughter cells. At the end of mitosis, it reforms on each group of chromosomes in the daughter cells. However, nuclear envelope reformation is delayed on lagging chromosomes and DNA bridges. Defects in the coordination between nuclear envelope reformation and chromosome segregation impair the nuclear functions. Mechanical stress to which micronuclei and DNA bridges are subjected to combined with their particular architecture and the altered nuclear functions result in DNA damage. While micronuclei and DNA bridges were considered for more than 100 years as mere indicators of chromosomal instability, rapid technological advances are helping to better understand the biological consequences of these aberrant nuclear morphologies. Recent studies provide interesting evidence that micronuclei and chromatin bridges act as a key platforms for a catastrophic mutational process observed in cancers called chromothripsis and a trigger for the innate immune response. Therefore, they could affect cellular functions by both genetic and non-genetic means.


Assuntos
Cromotripsia , Membrana Nuclear , Animais , Núcleo Celular/genética , Cromatina/genética , Cromossomos , Mitose , Membrana Nuclear/genética
2.
Bioinformatics ; 33(21): 3508-3510, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036562

RESUMO

SUMMARY: An R package for performing number and brightness image analysis, with the implementation of a novel automatic detrending algorithm. AVAILABILITY AND IMPLEMENTATION: Available at https://github.com/rorynolan/nandb for all platforms. CONTACT: rnolan@well.ox.ac.uk or spadilla@well.ox.ac.uk. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Software , Animais , Células COS , Chlorocebus aethiops , Humanos
3.
Front Cell Dev Biol ; 9: 745195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650988

RESUMO

Chromosomal instability, the most frequent form of plasticity in cancer cells, often proceeds through the formation of chromosome bridges. Despite the importance of these bridges in tumor initiation and progression, debate remains over how and when they are resolved. In this study, we investigated the behavior and properties of chromosome bridges to gain insight into the potential mechanisms underlying bridge-induced genome instability. We report that bridges may break during mitosis or may remain unbroken until the next interphase. During mitosis, we frequently observed discontinuities in the bridging chromatin, and our results strongly suggest that a substantial fraction of chromosome bridges are broken during this stage of the cell cycle. This notion is supported by the observation that the chromatin flanking mitotic bridge discontinuities is often decorated with the phosphorylated form of the histone H2AX, a marker of DNA breaks, and by MDC1, an early mediator of the cell response to DNA breaks. Also, free 3'OH DNA ends were detected in more than half of the bridges during the final stages of cell division. However, even if detected, the DNA ends of broken bridges are not repaired in mitosis. To investigate whether mitotic bridge breakage depends on mechanical stress, we used experimental models in which chromosome bridges with defined geometry are formed. Although there was no association between spindle pole separation or the distance among non-bridge kinetochores and bridge breakage, we found a direct correlation between the distance between bridge kinetochores and bridge breakage. Altogether, we conclude that the discontinuities observed in bridges during mitosis frequently reflect a real breakage of the chromatin and that the mechanisms responsible for chromosome bridge breakage during mitosis may depend on the separation between the bridge kinetochores. Considering that previous studies identified mechanical stress or biochemical digestion as possible causes of bridge breakage in interphase cells, a multifactorial model emerges for the breakage of chromosome bridges that, according to our results, can occur at different stages of the cell cycle and can obey different mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA