RESUMO
Bile acids are lipid-emulsifying metabolites synthesized in hepatocytes and maintained in vivo through enterohepatic circulation between the liver and small intestine1. As detergents, bile acids can cause toxicity and inflammation in enterohepatic tissues2. Nuclear receptors maintain bile acid homeostasis in hepatocytes and enterocytes3, but it is unclear how mucosal immune cells tolerate high concentrations of bile acids in the small intestine lamina propria (siLP). CD4+ T effector (Teff) cells upregulate expression of the xenobiotic transporter MDR1 (encoded by Abcb1a) in the siLP to prevent bile acid toxicity and suppress Crohn's disease-like small bowel inflammation4. Here we identify the nuclear xenobiotic receptor CAR (encoded by Nr1i3) as a regulator of MDR1 expression in T cells that can safeguard against bile acid toxicity and inflammation in the mouse small intestine. Activation of CAR induced large-scale transcriptional reprogramming in Teff cells that infiltrated the siLP, but not the colon. CAR induced the expression of not only detoxifying enzymes and transporters in siLP Teff cells, as in hepatocytes, but also the key anti-inflammatory cytokine IL-10. Accordingly, CAR deficiency in T cells exacerbated bile acid-driven ileitis in T cell-reconstituted Rag1-/- or Rag2-/- mice, whereas pharmacological activation of CAR suppressed it. These data suggest that CAR acts locally in T cells that infiltrate the small intestine to detoxify bile acids and resolve inflammation. Activation of this program offers an unexpected strategy to treat small bowel Crohn's disease and defines lymphocyte sub-specialization in the small intestine.
Assuntos
Ácidos e Sais Biliares/metabolismo , Regulação da Expressão Gênica , Intestino Delgado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Linfócitos T/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Receptor Constitutivo de Androstano , Doença de Crohn/metabolismo , Feminino , Ileíte/metabolismo , Inflamação/metabolismo , Interleucina-10/biossíntese , Interleucina-10/genética , Intestino Delgado/citologia , CamundongosRESUMO
CD4+ T cells are tightly regulated by microbiota in the intestine, but whether intestinal T cells interface with host-derived metabolites is less clear. Here, we show that CD4+ T effector (Teff) cells upregulated the xenobiotic transporter, Mdr1, in the ileum to maintain homeostasis in the presence of bile acids. Whereas wild-type Teff cells upregulated Mdr1 in the ileum, those lacking Mdr1 displayed mucosal dysfunction and induced Crohn's disease-like ileitis following transfer into Rag1-/- hosts. Mdr1 mitigated oxidative stress and enforced homeostasis in Teff cells exposed to conjugated bile acids (CBAs), a class of liver-derived emulsifying agents that actively circulate through the ileal mucosa. Blocking ileal CBA reabsorption in transferred Rag1-/- mice restored Mdr1-deficient Teff cell homeostasis and attenuated ileitis. Further, a subset of ileal Crohn's disease patients displayed MDR1 loss of function. Together, these results suggest that coordinated interaction between mucosal Teff cells and CBAs in the ileum regulate intestinal immune homeostasis.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/imunologia , Ácidos e Sais Biliares/imunologia , Linfócitos T CD4-Positivos/imunologia , Doença de Crohn/imunologia , Ileíte/imunologia , Mucosa Intestinal/imunologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/deficiência , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Acridinas/farmacologia , Adulto , Animais , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Transporte Biológico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/patologia , Doença de Crohn/genética , Doença de Crohn/patologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Homeostase/imunologia , Humanos , Ileíte/genética , Ileíte/patologia , Íleo/imunologia , Íleo/patologia , Imunidade nas Mucosas , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Estresse Oxidativo , Transdução de Sinais , Tetra-Hidroisoquinolinas/farmacologiaRESUMO
Negative energy balance is a prevalent feature of cystic fibrosis (CF). Pancreatic insufficiency, elevated energy expenditure, lung disease, and malnutrition, all characteristic of CF, contribute to the negative energy balance causing low body-growth phenotype. As low body weight and body mass index strongly correlate with poor lung health and survival of patients with CF, improving energy balance is an important clinical goal (e.g., high-fat diet). CF mouse models also exhibit negative energy balance (growth retardation and high energy expenditure), independent from exocrine pancreatic insufficiency, lung disease, and malnutrition. To improve energy balance through increased caloric intake and reduced energy expenditure, we disrupted leptin signaling by crossing the db/db leptin receptor allele with mice carrying the R117H Cftr mutation. Compared with db/db mice, absence of leptin signaling in CF mice (CF db/db) resulted in delayed and moderate hyperphagia with lower de novo lipogenesis and lipid deposition, producing only moderately obese CF mice. Greater body length was found in db/db mice but not in CF db/db, suggesting CF-dependent effect on bone growth. The db/db genotype resulted in lower energy expenditure regardless of Cftr genotype leading to obesity. Despite the db/db genotype, the CF genotype exhibited high respiratory quotient indicating elevated carbohydrate oxidation, thus limiting carbohydrates for lipogenesis. In summary, db/db-linked hyperphagia, elevated lipogenesis, and morbid obesity were partially suppressed by reduced CFTR activity. CF mice still accrued large amounts of adipose tissue in contrast to mice fed a high-fat diet, thus highlighting the importance of dietary carbohydrates and not simply fat for energy balance in CF. NEW & NOTEWORTHY We show that cystic fibrosis (CF) mice are able to accrue fat under conditions of carbohydrate overfeeding, increased lipogenesis, and decreased energy expenditure, although length was unaffected. High-fat diet feeding failed to improve growth in CF mice. Morbid db/db-like obesity was reduced in CF double-mutant mice by reduced CFTR activity.
Assuntos
Tecido Adiposo/patologia , Fibrose Cística/complicações , Leptina/metabolismo , Lipogênese , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Animais , Dieta da Carga de Carboidratos/efeitos adversos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/genética , Transdução de SinaisRESUMO
Although a clear association has been established between IL-33 and inflammatory bowel disease, mechanistic studies to date, primarily using acute murine models of colitis, have yielded contradicting results, demonstrating both pathogenic and protective roles. We used a well-characterized, spontaneous model of inflammatory bowel disease [ie, SAMP1/YitFc (SAMP) mice] to investigate the role of IL-33 during chronic intestinal inflammation. Our results showed marked eosinophil infiltration into the gut mucosa with increased levels of eotaxins and type 2 helper T-cell (Th2) cytokines as disease progressed and became more severe, which could be reversed upon either eosinophil depletion or blockade of IL-33 signaling. Exogenous IL-33 administration recapitulated these effects in ilea of uninflamed (parental) control AKR/J mice. Human data supported these findings, showing colocalization and up-regulation of IL-33 and eosinophils in the colonic mucosa of inflammatory bowel disease patients versus noninflamed controls. Finally, colonization of commensal flora by fecal material transplantation into germ-free SAMP and the presence of the gut microbiome induced IL-33, subsequent eosinophil infiltration, and mounting of Th2 immune responses, leading to exacerbation of chronic intestinal inflammation characteristic of SAMP mice. These data demonstrate a pathogenic role for IL-33-mediated eosinophilia and activation of Th2 immunity in chronic intestinal inflammation that is dependent on the gut microbiome. Targeting IL-33 may represent a novel therapeutic approach to treat patients with inflammatory bowel disease.
Assuntos
Eosinófilos/citologia , Ileíte/patologia , Interleucina-33/metabolismo , Células Th2/imunologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Ileíte/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Regulação para CimaRESUMO
Comensal Bacteroidota (Bacteroidota) and Enterobacteriacea are often linked to gut inflammation. However, the causes for variability of pro-inflammatory surface antigens that affect gut commensal/opportunistic dualism in Bacteroidota remain unclear. By using the classical lipopolysaccharide/O-antigen 'rfb operon' in Enterobacteriaceae as a surface antigen model (5-rfb-gene-cluster rfbABCDX), and a recent rfbA-typing strategy for strain classification, we characterized the integrity and conservancy of the entire rfb operon in Bacteroidota. Through exploratory analysis of complete genomes and metagenomes, we discovered that most Bacteroidota have the rfb operon fragmented into nonrandom patterns of gene-singlets and doublets/triplets, termed 'rfb-gene-clusters', or rfb-'minioperons' if predicted as transcriptional. To reflect global operon integrity, contiguity, duplication, and fragmentation principles, we propose a six-category (infra/supra-numerary) cataloging system and a Global Operon Profiling System for bacteria. Mechanistically, genomic sequence analyses revealed that operon fragmentation is driven by intra-operon insertions of predominantly Bacteroides-DNA (thetaiotaomicron/fragilis) and likely natural selection in gut-wall specific micro-niches or micropathologies. Bacteroides-insertions, also detected in other antigenic operons (fimbriae), but not in operons deemed essential (ribosomal), could explain why Bacteroidota have fewer KEGG-pathways despite large genomes. DNA insertions, overrepresenting DNA-exchange-avid (Bacteroides) species, impact our interpretation of functional metagenomics data by inflating by inflating gene-based pathway inference and by overestimating 'extra-species' abundance. Of disease relevance, Bacteroidota species isolated from cavitating/cavernous fistulous tract (CavFT) microlesions in Crohn's Disease have supra-numerary fragmented operons, stimulate TNF-alpha from macrophages with low potency, and do not induce hyperacute peritonitis in mice compared to CavFT Enterobacteriaceae. The impact of 'foreign-DNA' insertions on pro-inflammatory operons, metagenomics, and commensalism/opportunism requires further studies to elucidate their potential for novel diagnostics and therapeutics, and to elucidate the role of co-existing pathobionts in Crohn's disease microlesions.
Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Metagenômica , Óperon , Camundongos , Animais , Humanos , Doença de Crohn/microbiologia , Doença de Crohn/genética , Bacteroidetes/genética , Bacteroidetes/classificação , Antígenos de Bactérias/genética , Genoma Bacteriano , Enterobacteriaceae/genética , Enterobacteriaceae/classificaçãoRESUMO
In medicine, parasitic cysts or cysticerci (fluid-filled cysts, larval stage of tapeworms) are believed to be sterile (no bacteria), and therein, the treatment of cysticerci infestations of deep extra-intestinal tissues (e.g., brain) relies almost exclusively on the use of antiparasitic medications, and rarely antibiotics. To date, however, it is unclear why common post-treatment complications include abscessation. This study quantified the microbial composition of parasitic cyst contents in a higher-order rodent host, using multi-kingdom shotgun metagenomics, to improve our understanding of gut microbial translocation and adaptation strategies in wild environments. Analysis was conducted on DNA from two hepatic parasitic cysts (Hydatigera (Taeenia) taeniaeformis) in an adult vole mouse (Microtus arvalis), and from feces, liver, and peritoneal fluid of three other vole family members living in a vegetable garden in Ohio, USA. Bacterial metagenomics revealed the presence of gut commensal/opportunistic species, including Parabacteroides distasonis, Klebsiella variicola, Enterococcus faecium, and Lactobacillus acidophilus, inhabiting the cysts. Parabacteroides distasonis and other species were also present outside the cyst in the peritoneal fluid. Remarkably, viral metagenomics revealed various murine viral species, but unexpectedly, it detected an insect-origin virus from the army moth (Pseudaletia/Mythimna unipuncta) known as Mythimna unipuncta granulovirus A (MyunGV-A) in both cysts, and in one fecal and one peritoneal sample from two different voles, indicating survival of the insect virus and adaption in voles. Metagenomics also revealed a significantly lower probability of fungal detection in the cysts compared to other samples (peritoneal fluid, p<0.05; and feces p<0.05), with single taxon detection in each cyst for Malassezia and Pseudophaeomoniella oleicola. The samples with a higher probability of fungi were the peritoneal fluid. In conclusion, commensal/pathobiont bacterial species can inhabit parasitic tapeworm cysts, which needs to be considered during therapeutic decisions of cysticerci or other chronic disease scenarios where immune privileged and spatially restricted ecosystems with limited nutrients and minimal presence of immune cells could facilitate microbial adaptation, such as within gut wall cavitating micropathologies in Crohn's disease.
RESUMO
BACKGROUNDS & AIMS: Bile acids (BAs) are core gastrointestinal metabolites with dual functions in lipid absorption and cell signaling. BAs circulate between the liver and distal small intestine (i.e., ileum), yet the dynamics through which complex BA pools are absorbed in the ileum and interact with host intestinal cells in vivo remain poorly understood. Because ileal absorption is rate-limiting in determining which BAs in the intestinal lumen gain access to host intestinal cells and receptors, and at what concentrations, we hypothesized that defining the rates and routes of ileal BA absorption in vivo would yield novel insights into the physiological forms and functions of mouse enterohepatic BA pools. METHODS: Using ex vivo mass spectrometry, we quantified 88 BA species and metabolites in the intestinal lumen and superior mesenteric vein of individual wild-type mice, and cage-mates lacking the ileal BA transporter, Asbt/Slc10a2. RESULTS: Using these data, we calculated that the pool of BAs circulating through ileal tissue (i.e., the ileal BA pool) in fasting C57BL/6J female mice is â¼0.3 µmol/g. Asbt-mediated transport accounted for â¼80% of this pool and amplified size. Passive permeability explained the remaining â¼20% and generated diversity. Compared with wild-type mice, the ileal BA pool in Asbt-deficient mice was â¼5-fold smaller, enriched in secondary BA species and metabolites normally found in the colon, and elicited unique transcriptional responses on addition to exvivo-cultured ileal explants. CONCLUSIONS: This study defines quantitative traits of the mouse enterohepatic BA pool and reveals how aberrant BA metabolism can impinge directly on host intestinal physiology.
RESUMO
Crohn's disease (CD) has been traditionally viewed as a chronic inflammatory disease that cause gut wall thickening and complications, including fistulas, by mechanisms not understood. By focusing on Parabacteroides distasonis (presumed modern succinate-producing commensal probiotic), recovered from intestinal microfistulous tracts (cavernous fistulous micropathologies CavFT proposed as intermediate between 'mucosal fissures' and 'fistulas') in two patients that required surgery to remove CD-damaged ilea, we demonstrate that such isolates exert pathogenic/pathobiont roles in mouse models of CD. Our isolates are clonally-related; potentially emerging as transmissible in the community and mice; proinflammatory and adapted to the ileum of germ-free mice prone to CD-like ileitis (SAMP1/YitFc) but not healthy mice (C57BL/6J), and cytotoxic/ATP-depleting to HoxB8-immortalized bone marrow derived myeloid cells from SAMP1/YitFc mice when concurrently exposed to succinate and extracts from CavFT-derived E. coli , but not to cells from healthy mice. With unique genomic features supporting recent genetic exchange with Bacteroides fragilis -BGF539, evidence of international presence in primarily human metagenome databases, these CavFT Pdis isolates could represent to a new opportunistic Parabacteroides species, or subspecies (' cavitamuralis' ) adapted to microfistulous niches in CD.
RESUMO
This study was initiated to determine the persistence, distribution, and quantification of infectious bursal disease virus (IBDV) in lymphoid and nonlymphoid tissues of specific-pathogen-free (SPF) and commercial broiler chickens. Two serotype 1 strains, STC classic and IN variant, were independently used in the experiments. Five separate experiments were conducted using 2- and 4-wk-old SPF chickens, 2- and 4-wk-old in ovo-vaccinated commercial broilers, and 2-wk-old commercial broilers having maternally derived anti-IBDV antibodies. Pooled data from five experiments revealed that SPF chickens had a significantly higher incidence of IBDV-positive reverse transcriptase PCR (RT-PCR) results than commercial chickens (multivariable logistic regression, adjusted odds ratio = 15.28; 95% confidence limits [CL] = 9.53, 24.51, P < 0.0001). In many cases, the viral RNA (vRNA) persisted longer in in ovo-vaccinated commercial broilers bearing maternally derived antibodies compared with similar broilers not vaccinated in ovo. The STC strain was more frequently detected in tissues than the IN strain (chi-square P < 0.0001). In lymphoid tissues, STC and IN strains were detected for the longest duration in bursal tissues followed by spleen, thymus, and bone marrow. In nonlymphoid tissues, STC and IN strains were detected the longest in cecum followed by liver, kidney, pancreas, lungs, thigh, and breast muscles. Compared with bursal tissues, muscle and bone marrow tissues were significantly less likely to yield an IBDV-positive RT-PCR result (P < 0.0001). Although STC vRNA was detected up to 42 days postinoculation (DPI) in bursal homogenates of SPF chickens, virus isolation from bursal homogenates using embryonated chicken eggs was only possible up to 28 DPI. Similarly, STC vRNA was detected up to 42 DPI in bursal tissues of commercial broilers, but infectious virus could be isolated only up to 21 DPI. The IN strain was isolated up to 10 DPI from bursal homogenates of SPF chickens and broilers, but vRNA was detected up to 35 DPI in SPF chickens and 21 DPI in broilers. This study emphasizes that the detection ofvRNA is not indicative of the presence of infectious virus, and virus isolation has to be performed to prove the presence of infectious virus.
Assuntos
Infecções por Birnaviridae/veterinária , Galinhas , Vírus da Doença Infecciosa da Bursa/imunologia , Doenças das Aves Domésticas/imunologia , Animais , Anticorpos Antivirais/sangue , Infecções por Birnaviridae/epidemiologia , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/prevenção & controle , Embrião de Galinha , Ensaio de Imunoadsorção Enzimática/veterinária , Imunidade Materno-Adquirida , Incidência , Vírus da Doença Infecciosa da Bursa/classificação , Vírus da Doença Infecciosa da Bursa/genética , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/prevenção & controle , RNA Viral/genética , RNA Viral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Organismos Livres de Patógenos EspecíficosRESUMO
The causes for variability of pro-inflammatory surface antigens that affect gut commensal/opportunistic dualism within the phylum Bacteroidota remain unclear (1, 2). Using the classical lipopolysaccharide/O-antigen 'rfb operon' in Enterobacteriaceae as a surface antigen model (5-gene-cluster rfbABCDX), and a recent rfbA-typing strategy for strain classification (3), we characterized the architecture/conservancy of the entire rfb operon in Bacteroidota. Analyzing complete genomes, we discovered that most Bacteroidota have the rfb operon fragmented into non-random gene-singlets and/or doublets/triplets, termed 'minioperons'. To reflect global operon integrity, duplication, and fragmentation principles, we propose a five-category (infra/supernumerary) cataloguing system and a Global Operon Profiling System for bacteria. Mechanistically, genomic sequence analyses revealed that operon fragmentation is driven by intra-operon insertions of predominantly Bacteroides-DNA (thetaiotaomicron/fragilis) and likely natural selection in specific micro-niches. Bacteroides-insertions, also detected in other antigenic operons (fimbriae), but not in operons deemed essential (ribosomal), could explain why Bacteroidota have fewer KEGG-pathways despite large genomes (4). DNA insertions overrepresenting DNA-exchange-avid species, impact functional metagenomics by inflating gene-based pathway inference and overestimating 'extra-species' abundance. Using bacteria from inflammatory gut-wall cavernous micro-tracts (CavFT) in Crohn's Disease (5), we illustrate that bacteria with supernumerary-fragmented operons cannot produce O-antigen, and that commensal/CavFT Bacteroidota stimulate macrophages with lower potency than Enterobacteriaceae, and do not induce peritonitis in mice. The impact of 'foreign-DNA' insertions on pro-inflammatory operons, metagenomics, and commensalism offers potential for novel diagnostics and therapeutics.
RESUMO
Parabacteroides distasonis (Pdis) is the type species for the new Parabacteroides genus, and a gut commensal of the Bacteroidetes phylum. Emerging reports (primarily based on reference strain/ATCC-8503) concerningly propose that long-known opportunistic pathogen Pdis is a probiotic. We posit there is an urgent need to characterize the pathogenicity of Pdis strain-strain variability. Unfortunately, no methods/insights exist to classify Bacteroidetes for this purpose. Herein, we developed a virulence gene-based classification system for Pdis and Bacteroidetes to facilitate pathogenic-vs-probiotic characterization. We used DNA in silico methods to develop a system based on the virulence (lipopolysaccharide/bacterial wall) 'rfbA O-antigen-synthesis gene'. We then performed phylogenetic analysis of rfbA from fourteen Pdis complete genomes (21 genes), other Parabacteroides, Bacteroidetes, and Enterobacteriaceae; and proposed a PCR-based Restriction-Fragment Length Polymorphism method. Cluster analysis revealed that Pdis can be classified into four lineages (based on gene gaps/insertions) which we designated rfbA-Types I, II, III, and IV. In context, we found 14 additional rfbA-types (I-XVIII) interspersed with numerous Bacteroidetes and pathogenic Enterobacteriaceae forming three major "rfbA-superclusters." For laboratory rfbA-Typing implementation, we developed a PCR-primer strategy to amplify Pdis rfbA genes (100%-specificity) to conduct MboII-RFLP and sub-classify Pdis. In-silico primers for other Bacteroidetes are proposed/discussed. Comparative analysis of lipopolysaccharide/lipid-A gene lpxK confirmed rfbA as highly discriminant. In conclusion, rfbA-Typing classifies Bacteroidetes/Pdis into unique clusters/superclusters given rfbA copy/sequence variability. Analysis revealed that most pathogenic Pdis strains are single-copy rfbA-Type I . The relevance of the rfbA strain variability in disease might depend on their hypothetical modulatory interactions with other O-antigens/lipopolysaccharides and TLR4 lipopolysaccharide-receptors in human/animal cells.
Assuntos
Proteínas de Bactérias/genética , Bacteroidetes/classificação , Glicosiltransferases/genética , Antígenos O/genética , Animais , Técnicas de Tipagem Bacteriana/métodos , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/patogenicidade , Primers do DNA/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Filogenia , Polimorfismo de Fragmento de Restrição , Probióticos/química , Probióticos/classificação , VirulênciaRESUMO
Reactive oxygen species play a major role in the induction of programmed cell death and numerous diseases. Production of reactive oxygen species is ubiquitous in biological systems such as humans, bacteria, fungi/yeasts, and plants. Although reactive oxygen species are known to cause diseases, little is known about the importance of the combined oxidative stress burden in the gut. Understanding the dynamics and the level of oxidative stress 'reactivity' across kingdoms could help ascertain the combined consequences of free radical accumulation in the gut lumen. Here, we present fundamental similarities of oxidative stress derived from the host immune cells, bacteria, yeasts, plants, and the therein-derived diets, which often accentuate the burden of free radicals by accumulation during storage and cooking conditions. Given the described similarities, oxidative stress could be better understood and minimized by monitoring the levels of oxidative stress in the feces to identify pro-inflammatory factors. However, we illustrate that dietary studies rarely monitor oxidative stress markers in the feces, and therefore our knowledge on fecal oxidative stress monitoring is limited. A more holistic approach to understanding oxidative stress 'reactivity' in the gut could help improve strategies to use diet and microbiota to prevent intestinal diseases.
Assuntos
Microbiota , Estresse Oxidativo , Radicais Livres , Humanos , Oxirredução , Espécies Reativas de OxigênioRESUMO
Human coronaviruses present a substantial global disease burden, causing damage to populations' health, economy, and social well-being. Glycans are one of the main structural components of all microbes and organismic structures, including viruses-playing multiple essential roles in virus infection and immunity. Studying and understanding virus glycans at the nanoscale provide new insights into the diagnosis and treatment of viruses. Glycan nanostructures are considered potential targets for molecular diagnosis, antiviral therapeutics, and the development of vaccines. This review article describes glycan nanostructures (eg, glycoproteins and glycolipids) that exist in cells, subcellular structures, and microbes. We detail the structure, characterization, synthesis, and functions of virus glycans. Furthermore, we describe the glycan nanostructures of different human coronaviruses, such as human coronavirus 229E (HCoV-229E), human coronavirus OC43 (HCoV-OC43), severe acute respiratory syndrome-associated coronavirus (SARS-CoV), human coronavirus NL63 (HCoV-NL63), human coronavirus HKU1 (HCoV-HKU1), the Middle East respiratory syndrome-associated coronavirus (MERS-CoV), and how glycan nanotechnology can be useful to prevent and combat human coronaviruses infections, along with possibilities that are not yet explored.
Assuntos
Betacoronavirus/química , Nanoestruturas/análise , Nanoestruturas/química , Polissacarídeos/análise , Polissacarídeos/química , HumanosRESUMO
The raising of captive white-tailed deer (Odocoileus virginianus) is a growing agricultural industry in Ohio as it is in several other areas of the United States and around the world. Pooled fecal samples were collected from 30 white-tailed deer confinement facilities. Samples were cultured for five enteric bacterial pathogens. Premise prevalence rates were as follows: Escherichia coli O157, 3.3%; Listeria monocytogenes, 3.3%; Salmonella enterica, 0%; Yersinia enterocolitica, 30%; and Clostridium difficile, 36.7%. The ail virulence gene could not be amplified from any of the Y. enterocolitica isolates recovered. Toxigenic strains of C. difficile polymerase chain reaction ribotype 078, an emerging C. difficile genotype of humans and food animals, were recovered from 4 of 11 (36.4%) C. difficile-positive deer farms. Venison from farm-raised deer might become contaminated with foodborne pathogens, deer farmers may have occupational exposure to these zoonotic agents, and farm-raised deer could be a reservoir from which the environment and other livestock may become contaminated with a number of potentially zoonotic bacteria.
Assuntos
Animais Domésticos/microbiologia , Cervos/microbiologia , Zoonoses/microbiologia , Agricultura , Animais , Clostridioides difficile/isolamento & purificação , Reservatórios de Doenças/microbiologia , Reservatórios de Doenças/veterinária , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Doenças Transmitidas por Alimentos/microbiologia , Listeria monocytogenes/isolamento & purificação , Carne/microbiologia , Salmonella enterica/isolamento & purificação , Yersinia enterocolitica/isolamento & purificaçãoRESUMO
Several studies have measured the effectiveness of masks at retaining particles of various sizes in vitro. To identify a functional in vivo model, herein we used germ-free (GF) mice to test the effectiveness of textiles as filtration material and droplet barriers to complement available in vitro-based knowledge. Herein, we report a study conducted in vivo with bacteria-carrying microdroplets to determine to what extent household textiles prevent contamination of GF mice in their environment. Using a recently validated spray-simulation method (mimicking a sneeze), herein we first determined that combed-cotton textiles used as two-layer-barriers covering the mouse cages prevented the contamination of all GF animals when sprayed 10-20 bacterial-droplet units/cm2. In additional to exposure trials, the model showed that GF mice were again protected by the combed-cotton textile after the acute exposure to 10 times more droplets (20 "spray-sneezes", ~200 bacterial-droplet units/cm2). Overall, two-layer combed-cotton protected 100% of the GF mice from bacteria-carrying droplets (n = 20 exposure-events), which was significantly superior compared to 100% mouse contamination without textile coverage or when 95% partly covered (n = 18, Fisher-exact, p < 0.0001). Of relevance is that two different densities of cotton were equally effective (100%) in preventing contamination regardless of density (120-vs. 200 g/m2; T-test, p = 0.0028), suggesting that similar density materials could prevent droplet contamination. As a practical message, we conducted a speech trial (counting numbers, 1-100) with/without the protection of the same cotton textile used as face cover. The trial illustrated that contamination of surfaces occurs at a rate of >2-6 bacteria-carrying saliva-droplets per word (2.6 droplets/cm2, 30 cm) when speaking at 60-70 decibels and that cotton face covers fully prevent bacterial surface contamination.
RESUMO
The main form of COVID-19 transmission is via "oral-respiratory droplet contamination" (droplet: very small drop of liquid) produced when individuals talk, sneeze, or cough. In hospitals, health-care workers wear facemasks as a minimum medical "droplet precaution" to protect themselves. Due to the shortage of masks during the pandemic, priority is given to hospitals for their distribution. As a result, the availability/use of medical masks is discouraged for the public. However, for asymptomatic individuals, not wearing masks in public could easily cause the spread of COVID-19. The prevention of "environmental droplet contamination" (EnvDC) from coughing/sneezing/speech is fundamental to reducing transmission. As an immediate solution to promote "public droplet safety," we assessed household textiles to quantify their potential as effective environmental droplet barriers (EDBs). The synchronized implementation of a universal "community droplet reduction solution" is discussed as a model against COVID-19. Using a bacterial-suspension spray simulation model of droplet ejection (mimicking a sneeze), we quantified the extent by which widely available clothing fabrics reduce the dispersion of droplets onto surfaces within 1.8 m, the minimum distance recommended for COVID-19 "social distancing." All textiles reduced the number of droplets reaching surfaces, restricting their dispersion to <30 cm, when used as single layers. When used as double-layers, textiles were as effective as medical mask/surgical-cloth materials, reducing droplet dispersion to <10 cm, and the area of circumferential contamination to ~0.3%. The synchronized implementation of EDBs as a "community droplet reduction solution" (i.e., face covers/scarfs/masks and surface covers) will reduce COVID-19 EnvDC and thus the risk of transmitting/acquiring COVID-19.
RESUMO
Alistipes is a relatively new genus of bacteria isolated primarily from medical clinical samples, although at a low rate compared to other genus members of the Bacteroidetes phylum, which are highly relevant in dysbiosis and disease. According to the taxonomy database at The National Center for Biotechnology Information, the genus consists of 13 species: Alistipes finegoldii, Alistipes putredinis, Alistipes onderdonkii, Alistipes shahii, Alistipes indistinctus, Alistipes senegalensis, Alistipes timonensis, Alistipes obesi, Alistipes ihumii, Alistipes inops, Alistipes megaguti, Alistipes provencensis, and Alistipes massiliensis. Alistipes communis and A. dispar, and the subspecies A. Onderdonkii subspecies vulgaris (vs. onderdonkii subsp.) are the newest strains featured outside that list. Although typically isolated from the human gut microbiome various species of this genus have been isolated from patients suffering from appendicitis, and abdominal and rectal abscess. It is possible that as Alistipes spp. emerge, their identification in clinical samples may be underrepresented as novel MS-TOF methods may not be fully capable to discriminate distinct species as separate since it will require the upgrading of MS-TOF identification databases. In terms of pathogenicity, there is contrasting evidence indicating that Alistipes may have protective effects against some diseases, including liver fibrosis, colitis, cancer immunotherapy, and cardiovascular disease. In contrast, other studies indicate Alistipes is pathogenic in colorectal cancer and is associated with mental signs of depression. Gut dysbiosis seems to play a role in determining the compositional abundance of Alistipes in the feces (e.g., in non-alcoholic steatohepatitis, hepatic encephalopathy, and liver fibrosis). Since Alistipes is a relatively recent sub-branch genus of the Bacteroidetes phylum, and since Bacteroidetes are commonly associated with chronic intestinal inflammation, this narrative review illustrates emerging immunological and mechanistic implications by which Alistipes spp. correlate with human health.
Assuntos
Bacteroidetes/patogenicidade , Microbioma Gastrointestinal , Inflamação/microbiologia , Intestinos/microbiologia , Transtornos Mentais/microbiologia , Neoplasias/microbiologia , Animais , Bacteroidetes/classificação , Bacteroidetes/metabolismo , Disbiose , Interações Hospedeiro-Patógeno , Humanos , Inflamação/metabolismo , Transtornos Mentais/metabolismo , Transtornos Mentais/psicologia , Saúde Mental , Neoplasias/metabolismoRESUMO
With the epidemic of human obesity, dietary fats have increasingly become a focal point of biomedical research. Epidemiological studies indicate that high-fat diets (HFDs), especially those rich in long-chain saturated fatty acids (e.g., Western Diet, National Health Examination survey; NHANES 'What We Eat in America' report) have multi-organ pro-inflammatory effects. Experimental studies have confirmed some of these disease associations, and have begun to elaborate mechanisms of disease induction. However, many of the observed effects from epidemiological studies appear to be an over-simplification of the mechanistic complexity that depends on dynamic interactions between the host, the particular fatty acid, and the rather personalized genetics and variability of the gut microbiota. Of interest, experimental studies have shown that certain saturated fats (e.g., lauric and myristic fatty acid-rich coconut oil) could exert the opposite effect; that is, desirable anti-inflammatory and protective mechanisms promoting gut health by unanticipated pathways. Owing to the experimental advantages of laboratory animals for the study of mechanisms under well-controlled dietary settings, we focus this review on the current understanding of how dietary fatty acids impact intestinal biology. We center this discussion on studies from mice and rats, with validation in cell culture systems or human studies. We provide a scoping overview of the most studied diseases mechanisms associated with the induction or prevention of Inflammatory Bowel Disease in rodent models relevant to Crohn's Disease and Ulcerative Colitis after feeding either high-fat diet (HFD) or feed containing specific fatty acid or other target dietary molecule. Finally, we provide a general outlook on areas that have been largely or scarcely studied, and assess the effects of HFDs on acute and chronic forms of intestinal inflammation.
Assuntos
Colite Ulcerativa/etiologia , Doença de Crohn/etiologia , Citocinas/metabolismo , Ácidos Graxos/efeitos adversos , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Linfócitos T/metabolismo , Adipocinas/metabolismo , Animais , Colite Ulcerativa/imunologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/prevenção & controle , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Doença de Crohn/prevenção & controle , Ácidos Graxos/administração & dosagem , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal , Humanos , Absorção Intestinal , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Estresse Oxidativo , Transdução de Sinais , Linfócitos T/imunologiaRESUMO
Background: TNF-like cytokine 1A (TL1A) and its functional receptor, death-domain-receptor-3 (DR3), are multifunctional mediators of effector and regulatory immunity. We aimed to evaluate the functional role and therapeutic potential of TL1A/DR3 signaling in Crohn's disease-like ileitis. Methods: Ileitis-prone SAMP1/YitFc (SAMP) and TNFΔARE/+ mice were rendered deficient for DR3 or TL1A by microsatellite marker-assisted backcrossing. Pathological and immunological characteristics were compared between control and knockout mice, and mucosal immunophenotype was analyzed by Nanostring microarray assay. The therapeutic effect of pharmacological TL1A neutralization was also investigated. Results: DR3 deficiency was associated with restoration of a homeostatic mucosal immunostat in SAMP mice through the regulation of several pro- and anti-inflammatory genes. This led to suppression of effector immunity, amelioration of ileitis severity, and compromised ability of either unfractionated CD4+ or CD4+CD45RBhi mucosal lymphocytes to transfer ileitis to severe combined immunodeficient mice recipients. TNF-driven ileitis was also prevented in TNFΔARE/+xDR3-/- mice, in association with decreased expression of the pro-inflammatory cytokines TNF and IFN-γ. In contrast to DR3, TL1A was dispensable for the development of ileitis although it affected the kinetics of inflammation, as TNFΔARE/+xTL1A-/- demonstrated delayed onset of inflammation, whereas administration of a neutralizing, anti-TL1A antibody ameliorated early but not late TNFΔARE/+ ileitis. Conclusion: We found a prominent pro-inflammatory role of DR3 in chronic ileitis, which is only partially mediated via interaction with TL1A, raising the possibility for additional DR3 ligands. Death-domain-receptor-3 appears to be a master regulator of mucosal homeostasis and inflammation and may represent a candidate therapeutic target for chronic inflammatory conditions of the bowel.