Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Neuroimage ; 285: 120496, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101495

RESUMO

Diffusion MRI (dMRI) allows for non-invasive investigation of brain tissue microstructure. By fitting a model to the dMRI signal, various quantitative measures can be derived from the data, such as fractional anisotropy, neurite density and axonal radii maps. We investigate the Fisher Information Matrix (FIM) and uncertainty propagation as a generally applicable method for quantifying the parameter uncertainties in linear and non-linear diffusion MRI models. In direct comparison with Markov Chain Monte Carlo (MCMC) sampling, the FIM produces similar uncertainty estimates at much lower computational cost. Using acquired and simulated data, we then list several characteristics that influence the parameter variances, including data complexity and signal-to-noise ratio. For practical purposes we investigate a possible use of uncertainty estimates in decreasing intra-group variance in group statistics by uncertainty-weighted group estimates. This has potential use cases for detection and suppression of imaging artifacts.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neuritos , Humanos , Incerteza , Imagem de Difusão por Ressonância Magnética/métodos , Cadeias de Markov , Axônios
2.
Cereb Cortex ; 32(17): 3848-3863, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35029640

RESUMO

Previous studies aimed to unravel a digit-specific somatotopy in the primary sensorimotor (SM1) cortex. However, it remains unknown whether digit somatotopy is associated with motor preparation and/or motor execution during different types of tasks. We adopted multivariate representational similarity analysis to explore digit activation patterns in response to a finger tapping task (FTT). Sixteen healthy young adults underwent magnetic resonance imaging, and additionally performed an out-of-scanner choice reaction time task (CRTT) to assess digit selection performance. During both the FTT and CRTT, force data of all digits were acquired using force transducers. This allowed us to assess execution-related interference (i.e., digit enslavement; obtained from FTT & CRTT), as well as planning-related interference (i.e., digit selection deficit; obtained from CRTT) and determine their correlation with digit representational similarity scores of SM1. Findings revealed that digit enslavement during FTT was associated with contralateral SM1 representational similarity scores. During the CRTT, digit enslavement of both hands was also associated with representational similarity scores of the contralateral SM1. In addition, right hand digit selection performance was associated with representational similarity scores of left S1. In conclusion, we demonstrate a cortical origin of digit enslavement, and uniquely reveal that digit selection is associated with digit representations in primary somatosensory cortex (S1). Significance statement In current systems neuroscience, it is of critical importance to understand the relationship between brain function and behavioral outcome. With the present work, we contribute significantly to this understanding by uniquely assessing how digit representations in the sensorimotor cortex are associated with planning- and execution-related digit interference during a continuous finger tapping and a choice reaction time task. We observe that digit enslavement (i.e., execution-related interference) finds its origin in contralateral digit representations of SM1, and that deficits in digit selection (i.e., planning-related interference) in the right hand during a choice reaction time task are associated with more overlapping digit representations in left S1. This knowledge sheds new light on the functional contribution of the sensorimotor cortex to everyday motor skills.


Assuntos
Mapeamento Encefálico , Córtex Sensório-Motor , Mapeamento Encefálico/métodos , Dedos/fisiologia , Humanos , Imageamento por Ressonância Magnética , Tempo de Reação , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/fisiologia , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia , Adulto Jovem
3.
Neuroradiology ; 64(4): 753-764, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34984522

RESUMO

PURPOSE: Resective epilepsy surgery is a well-established, evidence-based treatment option in patients with drug-resistant focal epilepsy. A major predictive factor of good surgical outcome is visualization and delineation of a potential epileptogenic lesion by MRI. However, frequently, these lesions are subtle and may escape detection by conventional MRI (≤ 3 T). METHODS: We present the EpiUltraStudy protocol to address the hypothesis that application of ultra-high field (UHF) MRI increases the rate of detection of structural lesions and functional brain aberrances in patients with drug-resistant focal epilepsy who are candidates for resective epilepsy surgery. Additionally, therapeutic gain will be addressed, testing whether increased lesion detection and tailored resections result in higher rates of seizure freedom 1 year after epilepsy surgery. Sixty patients enroll the study according to the following inclusion criteria: aged ≥ 12 years, diagnosed with drug-resistant focal epilepsy with a suspected epileptogenic focus, negative conventional 3 T MRI during pre-surgical work-up. RESULTS: All patients will be evaluated by 7 T MRI; ten patients will undergo an additional 9.4 T MRI exam. Images will be evaluated independently by two neuroradiologists and a neurologist or neurosurgeon. Clinical and UHF MRI will be discussed in the multidisciplinary epilepsy surgery conference. Demographic and epilepsy characteristics, along with postoperative seizure outcome and histopathological evaluation, will be recorded. CONCLUSION: This protocol was reviewed and approved by the local Institutional Review Board and complies with the Declaration of Helsinki and principles of Good Clinical Practice. Results will be submitted to international peer-reviewed journals and presented at international conferences. TRIAL REGISTRATION NUMBER: www.trialregister.nl : NTR7536.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Imageamento por Ressonância Magnética , Criança , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/cirurgia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , Resultado do Tratamento
4.
Neuroimage ; 239: 118285, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34147632

RESUMO

There is an increasing interest in quantitative imaging of T1, T2 and diffusion contrast in the brain due to greater robustness against bias fields and artifacts, as well as better biophysical interpretability in terms of microstructure. However, acquisition time constraints are a challenge, particularly when multiple quantitative contrasts are desired and when extensive sampling of diffusion directions, high b-values or long diffusion times are needed for multi-compartment microstructure modeling. Although ultra-high fields of 7 T and above have desirable properties for many MR modalities, the shortening T2 and the high specific absorption rate (SAR) of inversion and refocusing pulses bring great challenges to quantitative T1, T2 and diffusion imaging. Here, we present the MESMERISED sequence (Multiplexed Echo Shifted Multiband Excited and Recalled Imaging of STEAM Encoded Diffusion). MESMERISED removes the dead time in Stimulated Echo Acquisition Mode (STEAM) imaging by an echo-shifting mechanism. The echo-shift (ES) factor is independent of multiband (MB) acceleration and allows for very high multiplicative (ESxMB) acceleration factors, particularly under moderate and long mixing times. This results in super-acceleration and high time efficiency at 7 T for quantitative T1 and diffusion imaging, while also retaining the capacity to perform quantitative T2 and B1 mapping. We demonstrate the super-acceleration of MESMERISED for whole-brain T1 relaxometry with total acceleration factors up to 36 at 1.8 mm isotropic resolution, and up to 54 at 1.25 mm resolution qT1 imaging, corresponding to a 6x and 9x speedup, respectively, compared to MB-only accelerated acquisitions. We then demonstrate highly efficient diffusion MRI with high b-values and long diffusion times in two separate cases. First, we show that super-accelerated multi-shell diffusion acquisitions with 370 whole-brain diffusion volumes over 8 b-value shells up to b = 7000 s/mm2 can be generated at 2 mm isotropic in under 8 minutes, a data rate of almost a volume per second, or at 1.8 mm isotropic in under 11 minutes, achieving up to 3.4x speedup compared to MB-only. A comparison of b = 7000 s/mm2 MESMERISED against standard MB pulsed gradient spin echo (PGSE) diffusion imaging shows 70% higher SNR efficiency and greater effectiveness in supporting complex diffusion signal modeling. Second, we demonstrate time-efficient sampling of different diffusion times with 1.8 mm isotropic diffusion data acquired at four diffusion times up to 290 ms, which supports both Diffusion Tensor Imaging (DTI) and Diffusion Kurtosis Imaging (DKI) at each diffusion time. Finally, we demonstrate how adding quantitative T2 and B1+ mapping to super-accelerated qT1 and diffusion imaging enables efficient quantitative multi-contrast mapping with the same MESMERISED sequence and the same readout train. MESMERISED extends possibilities to efficiently probe T1, T2 and diffusion contrast for multi-component modeling of tissue microstructure.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos , Neuroimagem/métodos , Mapeamento Encefálico/instrumentação , Mapeamento Encefálico/métodos , Imagem de Difusão por Ressonância Magnética/instrumentação , Imagem Ecoplanar/instrumentação , Humanos , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Neuroimagem/instrumentação
5.
Neuroimage ; 241: 118433, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34324975

RESUMO

Understanding the relationship between human brain structure and functional outcome is of critical importance in systems neuroscience. Diffusion MRI (dMRI) studies show that fractional anisotropy (FA) is predictive of motor control, underscoring the importance of white matter (WM). However, as FA is a surrogate marker of WM, we aim to shed new light on the structural underpinnings of this relationship by applying a multi-compartment microstructure model providing axonal density/radius indices. Sixteen young adults (7 males / 9 females), performed a hand/foot tapping task and a Multi Limb Reaction Time task. Furthermore, diffusion (STEAM &HARDI) and fMRI (localizer hand/foot activations) data were obtained. Sphere ROIs were placed on activation clusters with highest t value to guide interhemispheric WM tractography. Axonal radius/density indices of callosal parts intersecting with tractography were calculated from STEAM, using the diffusion-time dependent AxCaliber model, and correlated with behavior. Results indicated a possible association between larger apparent axonal radii of callosal motor fibers of the hand and higher tapping scores of both hands, and faster selection-related processing (normalized reaction) times (RTs) on diagonal limb combinations. Additionally, a trend was present for faster selection-related processing (normalized reaction) times for lower limbs being related with higher axonal density of callosal foot motor fibers, and for higher FA values of callosal motor fibers in general being related with better tapping and faster selection-related processing (normalized reaction) times. Whereas FA is sensitive in demonstrating associations with motor behavior, axon radius/density (i.e., fiber geometry) measures are promising to explain the physiological source behind the observed FA changes, contributing to deeper insights into brain-behavior interactions.


Assuntos
Axônios/fisiologia , Corpo Caloso/fisiologia , Imagem de Difusão por Ressonância Magnética/métodos , Extremidade Inferior/fisiologia , Desempenho Psicomotor/fisiologia , Extremidade Superior/fisiologia , Adolescente , Adulto , Contagem de Células/métodos , Tamanho Celular , Corpo Caloso/citologia , Corpo Caloso/diagnóstico por imagem , Humanos , Movimento/fisiologia , Tempo de Reação/fisiologia , Adulto Jovem
6.
Neuroimage ; 202: 116087, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31408716

RESUMO

Diffusion MRI (dMRI) in ex vivo human brain specimens is an important research tool for neuroanatomical investigations and the validation of dMRI techniques. Many ex vivo dMRI applications have benefited from very high dMRI resolutions achievable on small-bore preclinical or animal MRI scanners for small tissue samples. However, the investigation of entire human brains post mortem provides the important context of entire white matter (WM) network systems and entire gray matter (GM) areas connected through these systems. The investigation of intact ex vivo human brains in large bore systems creates challenges due to the limited gradient performance and transmit radio-frequency (B1+) inhomogeneities, specially at ultra-high field (UHF, 7T and higher). To overcome these issues, it is necessary to tailor ex vivo diffusion-weighted sequences specifically for high resolution and high diffusion-weighting. Here, we present kT-dSTEAM, which achieves B1+ homogenization across whole human brain specimens using parallel transmit (pTx) on a 9.4T MR system. We use kT-dSTEAM to obtain multi-shell high b-value and high resolution diffusion-weighted data in ex vivo whole human brains. Isotropic whole brain data can be acquired at high b-value (6000-8000 s/mm2) at high resolution (1000 µm) and at moderate b-value (3000 s/mm2) at ultra-high isotropic resolution (400 µm). As an illustration of the advantages of the ultra-high resolution, tractography across the WM/GM border shows less of the unwanted gyral crown bias, and more high-curvature paths connecting the sulcal wall than at lower resolution. The kT-dSTEAM also allows for acquisition of T1 and T2 weighted images suitable for estimating quantitative T1 and T2 maps. Finally, multi-shell analysis of kT-dSTEAM data at variable mixing time (TM) is shown as an approach for ex vivo data analysis which is adapted to the strengths of STEAM diffusion-weighting. Here, we use this gain for multi-orientation modelling and crossing-fiber tractography. We show that multi-shell data allows superior multiple orientation tractography of known crossing fiber structures in the brain stem.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Substância Cinzenta/anatomia & histologia , Humanos , Substância Branca/anatomia & histologia
7.
Neuroimage ; 168: 162-171, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28336427

RESUMO

Several magnetic resonance imaging (MRI) contrasts are sensitive to myelin content in gray matter in vivo which has ignited ambitions of MRI-based in vivo cortical histology. Ultra-high field (UHF) MRI, at fields of 7T and beyond, is crucial to provide the resolution and contrast needed to sample contrasts over the depth of the cortex and get closer to layer resolved imaging. Ex vivo MRI of human post mortem samples is an important stepping stone to investigate MRI contrast in the cortex, validate it against histology techniques applied in situ to the same tissue, and investigate the resolutions needed to translate ex vivo findings to in vivo UHF MRI. Here, we investigate key technology to extend such UHF studies to large human brain samples while maintaining high resolution, which allows investigation of the layered architecture of several cortical areas over their entire 3D extent and their complete borders where architecture changes. A 16 channel cylindrical phased array radiofrequency (RF) receive coil was constructed to image a large post mortem occipital lobe sample (~80×80×80mm3) in a wide-bore 9.4T human scanner with the aim of achieving high-resolution anatomical and quantitative MR images. Compared with a human head coil at 9.4T, the maximum Signal-to-Noise ratio (SNR) was increased by a factor of about five in the peripheral cortex. Although the transmit profile with a circularly polarized transmit mode at 9.4T is relatively inhomogeneous over the large sample, this challenge was successfully resolved with parallel transmit using the kT-points method. Using this setup, we achieved 60µm anatomical images for the entire occipital lobe showing increased spatial definition of cortical details compared to lower resolutions. In addition, we were able to achieve sufficient control over SNR, B0 and B1 homogeneity and multi-contrast sampling to perform quantitative T2* mapping over the same volume at 200µm. Markov Chain Monte Carlo sampling provided maximum posterior estimates of quantitative T2* and their uncertainty, allowing delineation of the stria of Gennari over the entire length and width of the calcarine sulcus. We discuss how custom RF receive coil arrays built to specific large post mortem sample sizes can provide a platform for UHF cortical layer-specific quantitative MRI over large fields of view.


Assuntos
Substância Cinzenta/efeitos dos fármacos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Lobo Occipital/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Humanos
8.
Neuroimage ; 155: 82-96, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28457975

RESUMO

Advances in biophysical multi-compartment modeling for diffusion MRI (dMRI) have gained popularity because of greater specificity than DTI in relating the dMRI signal to underlying cellular microstructure. A large range of these diffusion microstructure models have been developed and each of the popular models comes with its own, often different, optimization algorithm, noise model and initialization strategy to estimate its parameter maps. Since data fit, accuracy and precision is hard to verify, this creates additional challenges to comparability and generalization of results from diffusion microstructure models. In addition, non-linear optimization is computationally expensive leading to very long run times, which can be prohibitive in large group or population studies. In this technical note we investigate the performance of several optimization algorithms and initialization strategies over a few of the most popular diffusion microstructure models, including NODDI and CHARMED. We evaluate whether a single well performing optimization approach exists that could be applied to many models and would equate both run time and fit aspects. All models, algorithms and strategies were implemented on the Graphics Processing Unit (GPU) to remove run time constraints, with which we achieve whole brain dataset fits in seconds to minutes. We then evaluated fit, accuracy, precision and run time for different models of differing complexity against three common optimization algorithms and three parameter initialization strategies. Variability of the achieved quality of fit in actual data was evaluated on ten subjects of each of two population studies with a different acquisition protocol. We find that optimization algorithms and multi-step optimization approaches have a considerable influence on performance and stability over subjects and over acquisition protocols. The gradient-free Powell conjugate-direction algorithm was found to outperform other common algorithms in terms of run time, fit, accuracy and precision. Parameter initialization approaches were found to be relevant especially for more complex models, such as those involving several fiber orientations per voxel. For these, a fitting cascade initializing or fixing parameter values in a later optimization step from simpler models in an earlier optimization step further improved run time, fit, accuracy and precision compared to a single step fit. This establishes and makes available standards by which robust fit and accuracy can be achieved in shorter run times. This is especially relevant for the use of diffusion microstructure modeling in large group or population studies and in combining microstructure parameter maps with tractography results.


Assuntos
Algoritmos , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Modelos Neurológicos , Neuroimagem/métodos , Humanos , Imageamento Tridimensional/métodos
9.
Int J Obes (Lond) ; 36(5): 627-37, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22064161

RESUMO

OBJECTIVE: The aim of this functional magnetic resonance imaging (fMRI) study was to investigate reward-related brain activity in satiated overweight and healthy-weight participants in response to high-calorie palatable food pictures, when viewing the pictures without prior instructions (called unbiased viewing) versus imagining the taste of the shown pictures (called taste imagination). We predicted that neural activation in brain reward regions would be greater in overweight participants than in healthy-weight ones and that this difference between groups would be strongest during unbiased viewing. METHOD: Neural activation was measured using fMRI in 14 overweight (mean body mass index (BMI): 29.8 kg m(-2)) and 15 healthy-weight (mean BMI: 21.1 kg m(-2)) participants who were satiated, in response to palatable and unpalatable high-calorie and low-calorie food pictures, presented in an event-related design during two conditions: unbiased viewing (no prior instructions) versus taste imagination. RESULTS: A group × condition interaction was found in 14 brain regions involved in food reward processing during the presentation of high-calorie palatable food stimuli. During the taste imagination condition, neural activation in these regions was greater in the overweight participants than in the healthy-weight ones. Contrary to our expectations, the opposite pattern was observed during unbiased viewing: activation in reward regions in the overweight participants was reduced compared with the healthy-weight ones. In all brain reward regions except for the left amygdala, the group × condition interaction was specific to high-calorie palatable food stimuli. CONCLUSION: Greater reward activity in the overweight participants compared with the control group when imagining taste may represent an increased reward response induced by high-calorie palatable food. During unbiased viewing, reduced reward activation in the overweight participants compared with those with a healthy weight may reflect avoidance of high-calorie palatable food stimuli. Taken together, this pattern of activation may reflect ambivalence in the overweight group between desire for (in the taste imagination condition) and avoidance of (in the unbiased viewing condition) high-calorie palatable food stimuli.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos , Obesidade/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Saciação , Adulto , Sinais (Psicologia) , Feminino , Alimentos , Humanos , Obesidade/psicologia , Estimulação Luminosa , Período Pós-Prandial , Recompensa
10.
Neuroimage Clin ; 30: 102602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33652376

RESUMO

RATIONALE: Resective epilepsy surgery is an evidence-based curative treatment option for patients with drug-resistant focal epilepsy. The major preoperative predictor of a good surgical outcome is detection of an epileptogenic lesion by magnetic resonance imaging (MRI). Application of ultra-high field (UHF) MRI, i.e. field strengths ≥ 7 Tesla (T), may increase the sensitivity to detect such a lesion. METHODS: A keyword search strategy was submitted to Pubmed, EMBASE, Cochrane Database and clinicaltrials.gov to select studies on UHF MRI in patients with epilepsy. Follow-up study selection and data extraction were performed following PRISMA guidelines. We focused on I) diagnostic gain of UHF- over conventional MRI, II) concordance of MRI-detected lesion, seizure onset zone and surgical decision-making, and III) postoperative histopathological diagnosis and seizure outcome. RESULTS: Sixteen observational cohort studies, all using 7T MRI were included. Diagnostic gain of 7T over conventional MRI ranged from 8% to 67%, with a pooled gain of 31%. Novel techniques to visualize pathological processes in epilepsy and lesion detection are discussed. Seizure freedom was achieved in 73% of operated patients; no seizure outcome comparison was made between 7T MRI positive, 7T negative and 3T positive patients. 7T could influence surgical decision-making, with high concordance of lesion and seizure onset zone. Focal cortical dysplasia (54%), hippocampal sclerosis (12%) and gliosis (8.1%) were the most frequently diagnosed histopathological entities. SIGNIFICANCE: UHF MRI increases, yet variably, the sensitivity to detect an epileptogenic lesion, showing potential for use in clinical practice. It remains to be established whether this results in improved seizure outcome after surgical treatment. Prospective studies with larger cohorts of epilepsy patients, uniform scan and sequence protocols, and innovative post-processing technology are equally important as further increasing field strengths. Besides technical ameliorations, improved correlation of imaging features with clinical semiology, histopathology and clinical outcome has to be established.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia/diagnóstico por imagem , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Estudos Prospectivos , Estudos Retrospectivos , Resultado do Tratamento
11.
Neuroscience ; 256: 230-41, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24184115

RESUMO

In this study we were interested in the neural system supporting the audiovisual (AV) integration of emotional expression and emotional prosody. To this end normal participants were exposed to short videos of a computer-animated face voicing emotionally positive or negative words with the appropriate prosody. Facial expression of the face was either neutral or emotionally appropriate. To reveal the neural network involved in affective AV integration, standard univariate analysis of functional magnetic resonance (fMRI) data was followed by a random-effects Granger causality mapping (RFX-GCM). The regions that distinguished emotional from neutral facial expressions in the univariate analysis were taken as seed regions. In trials showing emotional expressions compared to neutral trials univariate analysis showed activation primarily in bilateral amygdala, fusiform gyrus, middle temporal gyrus/superior temporal sulcus and inferior occipital gyrus. When employing either the left amygdala or the right amygdala as a seed region in RFX-GCM we found connectivity with the right hemispheric fusiform gyrus, with the indication that the fusiform gyrus sends information to the Amygdala. These results led to a working model for face perception in general and for AV-affective integration in particular which is an elaborated adaptation of existing models.


Assuntos
Tonsila do Cerebelo/fisiologia , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Emoções/fisiologia , Vias Neurais/fisiologia , Percepção da Fala/fisiologia , Tonsila do Cerebelo/irrigação sanguínea , Córtex Cerebral/irrigação sanguínea , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/irrigação sanguínea , Oxigênio/sangue , Estimulação Luminosa
12.
Int J Biomed Imaging ; 2013: 658583, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554808

RESUMO

This work investigates the possibilities of applying high-angular-resolution-diffusion-imaging- (HARDI-) based methods in a clinical setting by investigating the performance of non-Gaussian diffusion probability density function (PDF) estimation for a range of b-values and diffusion gradient direction tables. It does so at realistic SNR levels achievable in limited time on a high-performance 3T system for the whole human brain in vivo. We use both computational simulations and in vivo brain scans to quantify the angular resolution of two selected reconstruction methods: Q-ball imaging and the diffusion orientation transform. We propose a new analytical solution to the ODF derived from the DOT. Both techniques are analytical decomposition approaches that require identical acquisition and modest postprocessing times and, given the proposed modifications of the DOT, can be analyzed in a similar fashion. We find that an optimal HARDI protocol given a stringent time constraint (<10 min) combines a moderate b-value (around 2000 s/mm(2)) with a relatively low number of acquired directions (>48). Our findings generalize to other methods and additional improvements in MR acquisition techniques.

13.
Artigo em Inglês | MEDLINE | ID: mdl-18982584

RESUMO

The recent challenge in diffusion imaging is to find acquisition schemes and analysis approaches that can represent non-gaussian diffusion profiles in a clinically feasible measurement time. In this work we investigate the effect of b-value and the number of gradient vector directions on Q-ball imaging and the Diffusion Orientation Transform (DOT) in a structured way using computational simulations, hardware crossing-fiber diffusion phantoms, and in-vivo brain scans. We observe that DOT is more robust to noise and independent of the b-value and number of gradients, whereas Q-ball dramatically improves the results for higher b-values and number of gradients and at recovering larger angles of crossing. We also show that Laplace-Beltrami regularization has wide applicability and generally improves the properties of DOT. Knowledge of optimal acquisition schemes for HARDI can improve the utility of diffusion weighted MR imaging in the clinical setting for the diagnosis of white matter diseases and presurgical planning.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Fibras Nervosas Mielinizadas/ultraestrutura , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Pathobiology ; 60(3): 136-42, 1992.
Artigo em Inglês | MEDLINE | ID: mdl-1320893

RESUMO

Various polypeptide hormones including vasopressin (VP) and gastrin-releasing peptide (GRP) are produced by small cell lung carcinomas (SCLC). VP as well as GRP have mitogenic effects on several cell types and are proposed to be autocrine growth factors. In this study the presence of VP mRNA, oxytocin (OT) mRNA and GRP mRNA was investigated in cell lines derived from SCLCs. Out of 26 cell lines 3 contained low amounts of VP mRNA (GLC-8, SCLC-21H and NCI-H345) and 7 contained abundant GRP mRNA (GLC-16, GLC-1-M13, SCLC-22H, NCI-H249, NCI-H345, NCI-H449 and NCI-H450). The GRP mRNA-containing cell lines belong to the classic SCLC type, whereas VP mRNA was found in two classic and one variant cell line. None of the SCLC cell lines contained detectable levels of OT mRNA. Of the three VP-expressing SCLC cell lines, GLC-8 had the highest level of VP mRNA. Both the length of the transcript and the hybridization with different probes containing exons A and C of the VP gene suggest that the detected transcript is a normal VP messenger. SCLC GLC-8 contained low levels of VP immunoreactivity and VP receptors. In GLC-8 an autocrine role of VP may be suspected.


Assuntos
Carcinoma de Células Pequenas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Biossíntese Peptídica , Vasopressinas/biossíntese , Sequência de Bases , Northern Blotting , Carcinoma de Células Pequenas/genética , Carcinoma de Células Pequenas/patologia , Sondas de DNA , Peptídeo Liberador de Gastrina , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Dados de Sequência Molecular , Ocitocina/biossíntese , Ocitocina/genética , Peptídeos/genética , RNA Mensageiro/análise , RNA Neoplásico/análise , Células Tumorais Cultivadas/metabolismo , Vasopressinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA