Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Langmuir ; 38(28): 8564-8574, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35793459

RESUMO

Biological amphiphiles derived from natural resources are presently being investigated in the hope that they will someday replace current synthetic surfactants, which are known pollutants of soils and water resources. Sophorolipids constitute one of the main classes of glycosylated biosurfactants that have attracted interest because they are synthesized by non-pathogenic yeasts from glucose and vegetable oils at high titers. In this work, the self-assembly properties of several sophorolipids in water at high concentrations (20-80 wt %), a range so far mostly uncharted, have been investigated by polarized-light microscopy and X-ray scattering. Some of these compounds were found to show lyotropic liquid-crystalline behavior as they display lamellar or hexagonal columnar mesophases. X-ray scattering data shows that the structure of the lamellar phase is almost fully interdigitated, which is likely due to the packing difference between the bulky hydrophilic tails and the more compact aliphatic chains. A tentative representation of the molecular organization of the columnar phase is also given. Moreover, some of these compounds display thermotropic liquid-crystalline behavior, either pure or in aqueous mixtures. In addition, small domains of the lamellar phase can easily be aligned by applying onto them a moderate a.c. electric field, which is a rather unusual feature for lyotropic liquid crystals. Altogether, our work explored the self-assembly liquid-crystalline behavior of sophorolipids at high concentration, which could shed light on the conditions of their potential industrial applications as well as on their biological function.


Assuntos
Cristais Líquidos , Interações Hidrofóbicas e Hidrofílicas , Cristais Líquidos/química , Ácidos Oleicos/química , Tensoativos/química , Água/química
2.
Langmuir ; 38(48): 14574-14587, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36410028

RESUMO

Lipid nanotube-vesicle networks are important channels for intercellular communication and transport of matter. Experimentally observed in neighboring mammalian cells but also reproduced in model membrane systems, a broad consensus exists on their formation and stability. Lipid membranes must be composed of at least two molecular components, each stabilizing low (generally a phospholipid) and high curvatures. Strong anisotropy or enhanced conical shape of the second amphiphile is crucial for the formation of nanotunnels. Anisotropic driving forces generally favor nanotube protrusions from vesicles. In this work, we report the unique case of topologically connected nanotubes-vesicles obtained in the absence of directional forces, in single-molecule membranes, composed of an anisotropic bolaform glucolipid, above its melting temperature, Tm. Cryo-TEM and fluorescence confocal microscopy show the interconnection between vesicles and nanotubes in a single-phase region, between 60 and 90 °C under diluted conditions. Solid-state NMR demonstrates that the glucolipid can assume two distinct configurations, head-head and head-tail. These arrangements, seemingly of comparable energy above the Tm, could explain the existence and stability of the topologically connected vesicles and nanotubes, which are generally not observed for classical single-molecule phospholipid-based membranes above their Tm.


Assuntos
Nanotubos , Humanos , Animais , Nanotubos/química , Fosfolipídeos/química , Nanotecnologia , Membranas , Microscopia de Fluorescência , Mamíferos
3.
Philos Trans A Math Phys Eng Sci ; 379(2206): 20200343, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34334020

RESUMO

Nanofibres are an interesting phase into which amphiphilic molecules can self-assemble. Described for a large number of synthetic lipids, they were seldom reported for natural lipids like microbial amphiphiles, known as biosurfactants. In this work, we show that the palmitic acid congener of sophorolipids (SLC16:0), one of the most studied families of biosurfactants, spontaneously forms a self-assembled fibre network (SAFiN) at pH below 6 through a pH jump process. pH-resolved in situ small-angle X-ray scattering (SAXS) shows a continuous micelle-to-fibre transition, characterized by an enhanced core-shell contrast between pH 9 and pH 7 and micellar fusion into a flat membrane between pH 7 and pH 6, approximately. Below pH 6, homogeneous, infinitely long nanofibres form by peeling off the membranes. Eventually, the nanofibre network spontaneously forms a thixotropic hydrogel with fast recovery rates after applying an oscillatory strain amplitude out of the linear viscoelastic regime: after being submitted to strain amplitudes during 5 min, the hydrogel recovers about 80% and 100% of its initial elastic modulus after, respectively, 20 s and 10 min. Finally, the strength of the hydrogel depends on the medium's final pH, with an elastic modulus fivefold higher at pH 3 than at pH 6. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.


Assuntos
Hidrogéis , Ácido Palmítico , Ácidos Oleicos , Espalhamento a Baixo Ângulo , Difração de Raios X
4.
FEMS Yeast Res ; 20(3)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32329773

RESUMO

Starmerella bombicola very efficiently produces the secondary metabolites sophorolipids (SLs). Their biosynthesis is not-growth associated and highly upregulated in the stationary phase. Despite high industrial and academic interest, the underlying regulation of SL biosynthesis remains unknown. In this paper, potential regulation of SL biosynthesis through the telomere positioning effect (TPE) was investigated, as the SL gene cluster is located adjacent to a telomere. An additional copy of this gene cluster was introduced elsewhere in the genome to investigate if this results in a decoy of regulation. Indeed, for the new strain, the onset of SL production was shifted to the exponential phase. This result was confirmed by RT-qPCR analysis. The TPE effect was further investigated by developing and applying a suitable reporter system for this non-conventional yeast, enabling non-biased comparison of gene expression between the subtelomeric CYP52M1- and the URA3 locus. This was done with a constitutive endogenous promotor (pGAPD) and one of the endogenous promotors of the SL biosynthetic gene cluster (pCYP52M1). A clear positioning effect was observed for both promotors with significantly higher GFP expression levels at the URA3 locus. No clear GFP upregulation was observed in the stationary phase for any of the new strains.


Assuntos
Regulação Fúngica da Expressão Gênica , Família Multigênica , Ácidos Oleicos/biossíntese , Ácidos Oleicos/genética , Saccharomycetales/genética , Metabolismo Secundário , Telômero/genética
5.
Biotechnol Bioeng ; 117(2): 453-465, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31612987

RESUMO

Glucolipids (GLs) are glycolipid biosurfactants with promising properties. These GLs are composed of glucose attached to a hydroxy fatty acid through a ω and/or ω-1 glycosidic linkage. Up until today these interesting molecules could only be produced using an engineered Starmerella bombicola strain (∆ugtB1::URA3 G9) producing GLs instead of sophorolipids, albeit with a very low average productivity (0.01 g·L-1 ·h-1 ). In this study, we investigated the reason(s) for this via reverse-transcription quantitative polymerase chain reaction and Liquid chromatography-multireaction monitoring-mass spectrometry. We found that all glycolipid biosynthetic genes and enzymes were downregulated in the ∆ugtB1 G9 strain in comparison to the wild type. The underlying reason for this downregulation was further investigated by performing quantitative metabolome comparison of the ∆ugtB1 G9 strain with the wild type and two other engineered strains also tinkered in their glycolipid biosynthetic gene cluster. This analysis revealed a clear distortion of the entire metabolism of the ∆ugtB1 G9 strain compared to all the other strains. Because the parental strain of the former was a spontaneous ∆ura3 mutant potentially containing other "hidden" mutations, a new GL production strain was generated based on a rationally engineered ∆ura3 mutant (PT36). Indeed, a 50-fold GL productivity increase (0.51 g·L-1 ·h-1 ) was obtained with the new ∆ugtB1::URA3 PT36 strain compared with the G9-based strain (0.01 g·L-1 ·h-1 ) in a 10 L bioreactor experiment, yielding 118 g/L GLs instead of 8.39 g/L. Purification was investigated and basic properties of the purified GLs were determined. This study forms the base for further development and optimization of S. bombicola as a production platform strain for (new) biochemicals.


Assuntos
Glicolipídeos , Engenharia Metabólica/métodos , Saccharomycetales , Tensoativos , Reatores Biológicos , Fermentação , Glicolipídeos/química , Glicolipídeos/genética , Glicolipídeos/metabolismo , Metaboloma/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Tensoativos/química , Tensoativos/metabolismo
6.
Soft Matter ; 16(10): 2528-2539, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32076696

RESUMO

Lipid lamellar hydrogels are rare soft fluids composed of a phospholipid lamellar phase instead of fibrillar networks. The mechanical properties of these materials are controlled by defects, induced by local accumulation of a polymer or surfactant in a classical lipid bilayer. Herein we report a new class of lipid lamellar hydrogels composed of one single bolaform glycosylated lipid obtained by fermentation. The lipid is self-organized into flat interdigitated membranes, stabilized by electrostatic repulsive forces and stacked in micrometer-sized lamellar domains. The defects in the membranes and the interconnection of the lamellar domains are responsible, from the nano- to the micrometer scales, for the elastic properties of the hydrogels. The lamellar structure is probed by combining small angle X-ray and neutron scattering (SAXS, SANS), the defect-rich lamellar domains are visualized by polarized light microscopy while the elastic properties are studied by oscillatory rheology. The latter show that both storage G' and loss G'' moduli scale as a weak power-law of the frequency, that can be fitted with fractional rheology models. The hydrogels possess rheo-thinning properties with second-scale recovery. We also show that ionic strength is not only necessary, as one could expect, to control the interactions in the lamellar phase but, most importantly, it directly controls the elastic properties of the lamellar gels.


Assuntos
Glucose/análogos & derivados , Glicolipídeos/química , Hidrogéis/química , Leveduras/química , Elasticidade , Concentração Osmolar , Reologia , Eletricidade Estática , Viscosidade
7.
FEMS Yeast Res ; 19(7)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31598679

RESUMO

To decrease our dependency for the diminishing source of fossils resources, bio-based alternatives are being explored for the synthesis of commodity and high-value molecules. One example in this ecological initiative is the microbial production of the biosurfactant sophorolipids by the yeast Starmerella bombicola. Sophorolipids are surface-active molecules mainly used as household and laundry detergents. Because S. bombicola is able to produce high titers of sophorolipids, the yeast is also used to increase the portfolio of lipophilic compounds through strain engineering. Here, the one-step microbial production of hydroxy fatty acids by S. bombicola was accomplished by the selective blockage of three catabolic pathways through metabolic engineering. Successful production of 17.39 g/l (ω-1) linked hydroxy fatty acids was obtained by the successive blockage of the sophorolipid biosynthesis, the ß-oxidation and the ω-oxidation pathways. Minor contamination of dicarboxylic acids and fatty aldehydes were successfully removed using flash chromatography. This way, S. bombicola was further expanded into a flexible production platform of economical relevant compounds in the chemical, food and cosmetic industries.


Assuntos
Ácidos Graxos/biossíntese , Engenharia Metabólica/métodos , Saccharomycetales/metabolismo , Ácidos Dicarboxílicos/análise , Microbiologia Industrial , Redes e Vias Metabólicas , Ácidos Oleicos/biossíntese , Oxirredução
8.
Appl Microbiol Biotechnol ; 103(11): 4347-4362, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30949810

RESUMO

Both strain engineering and process optimization are intensively studied in microbial biosurfactant literature. However, screening of multiple strains and/or medium components in parallel is a very labor-intensive and timely process, considering the only applied technique nowadays is evaluation through shake flask and/or bioreactor experiments. Therefore, in this work, the development, optimization, and application of a more throughput technique-based on 24-deep well plates-are described for a new Starmerella bombicola strain producing bolaform sophorolipids. To develop an optimal setup, the influence of plate position and culture volume and the type of sandwich cover was investigated. Optimal parameters, which did not result in significant differences compared with shake flask experiments concerning growth, glucose consumption, and production of novel sophorolipids, were defined and validated. Next, the new method was applied to evaluate the influence of the use of alternative (commercial) nitrogen sources in comparison with the yeast extract currently applied in the production medium, aiming to increase production efficiency. Self-made yeast extracts from S. bombicola cells were also included to evaluate possible recycling of cells after fermentation. In conclusion, the designed method enabled the efficient and successful comparison of ten different nitrogen sources in varying concentrations (1, 4, and 10 g/L) on bola sophorolipid production, which can now also be performed for other parameters important for growth and/or glycolipid production.


Assuntos
Engenharia Metabólica/métodos , Técnicas Microbiológicas/métodos , Ácidos Oleicos/biossíntese , Saccharomycetales/metabolismo , Meios de Cultura/química , Fermentação , Miniaturização , Saccharomycetales/crescimento & desenvolvimento
9.
FEMS Yeast Res ; 18(7)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982357

RESUMO

In this review, we focus on one of the most important microbial producers of biosurfactants, Starmerella bombicola. Emphasis is laid on the discovery, taxonomy, habitat, cellular characteristics, biochemistry and genetics of this non-pathogenic yeast. Biosurfactants are natural surface-active compounds produced by several types of microorganisms and have been considered an interesting alternative to synthetic surfactants. The sophorolipids produced by S. bombicola are promising biosurfactants, with application potential in food, pharmaceutical, cosmetic and cleaning industries. The fundamental knowledge described in this review is of crucial interest to optimize production of these promising compounds. Furthermore, it can be translated to produce novel non-native bioactive molecules with S. bombicola, and to deepen fundamental knowledge on other non-conventional yeast species and in the end to broaden their application potential as well.


Assuntos
Produtos Biológicos/metabolismo , Microbiologia Industrial , Ácidos Oleicos/metabolismo , Saccharomycetales/metabolismo , Tensoativos/metabolismo , Ecossistema , Regulação Fúngica da Expressão Gênica , Ácidos Oleicos/biossíntese , Ácidos Oleicos/genética , Filogenia , Saccharomycetales/classificação , Saccharomycetales/genética , Saccharomycetales/crescimento & desenvolvimento
10.
Biotechnol Bioeng ; 115(5): 1195-1206, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29288587

RESUMO

Glycolipid microbial biosurfactants, such as sophorolipids (SLs), generate high industrial interest as 100% biobased alternatives for traditional surfactants. A well-known success story is the efficient SL producer Starmerella bombicola, which reaches titers well above 200 g/L. Recent engineering attempts have enabled the production of completely new types of molecules by S. bombicola, e.g. the bolaform SLs. Scale-up of bolaform SL production was performed at 150 L scale. The purified product was evaluated in detergent applications, as classic SLs are mostly applied in eco-friendly detergents. In this paper, we show that they can be used as green and non-irritant surfactants in for example (automatic) dishwashing applications. However, due to the presence of an ester function in the biosurfactant molecule a limited chemical stability at higher pH values (>6.5) was noticed, (therefore called 'non-symmetrical' (nsBola)) which, is a major drawback that will most likely inhibit market introduction. An integrated bioprocess design (IBPD) strategy was thus applied to resolve this issue. The strategy was to replace the fed fatty acids with fatty alcohols, to generate so-called "symmetrical bolaform (sBola) sophorosides (SSs)," containing two instead of one glycosidic bond. Next to a change in feeding strategy, the blocking of the fatty alcohols from metabolizing/oxidizing through the suggested ω-oxidation pathway was necessary. For the latter, two putative fatty alcohol oxidase genes (fao1 and fao2) were identified in the S. bombicola genome and deleted in the bolaform SL producing strain (ΔatΔsble). Shake flask experiments for these new strains (ΔatΔsbleΔfao1 and ΔatΔsbleΔfao2) were performed to evaluate if the fed fatty alcohols were directly implemented into the SL biosynthesis pathway. Indeed, sBola sophorosides (SSs) production up to 20 g/L was observed for the ΔatΔsbleΔfao1 strain. Unexpectedly, the ΔatΔsbleΔfao2 strain only produced minor amounts of sBola sophorosides (SSs), and mainly nsBola SLs (alike the parental ΔatΔsble strain). The sBola sophorosides (SSs) were purified and their symmetrical structure was confirmed by NMR. They were found to be significantly more stable at higher pH, opening up the application potential of the biosurfactant by enhancing its stability properties.


Assuntos
Biotecnologia/métodos , Glicolipídeos/metabolismo , Engenharia Metabólica/métodos , Saccharomycetales/metabolismo , Tensoativos/metabolismo , Álcoois Graxos/metabolismo , Deleção de Genes , Glicolipídeos/química , Glicolipídeos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Saccharomycetales/crescimento & desenvolvimento , Tensoativos/química , Tensoativos/isolamento & purificação
11.
Soft Matter ; 14(38): 7859-7872, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30211424

RESUMO

A bio-based glycolipid bolaamphiphile (glyco-bolaamphiphile) has recently been produced (Van Renterghem et al., Biotechnol. Bioeng., 2018, 115, 1195-1206) on a gram scale by using the genetically-engineered S. bombicola strain Δat Δsble Δfao1. The glyco-bolaamphiphile bears two symmetrical sophorose headgroups at the extremities of a C16:0 (ω-1 hydroxylated palmitic alcohol) spacer. Its atypical structure has been obtained by redesigning the S. bombicola strain Δat Δsble, producing non-symmetrical glyco-bolaamphiphile, with an additional knock out (Δfao1) and feeding this new strain with fatty alcohols. The molecular structure of the glyco-bolaamphiphile is obtained by feeding the new strain a saturated C16 substrate (palmitic alcohol), which enables the biosynthesis of bolaform glycolipids. In this work, we show that the bio-based glyco-bolaamphiphile readily forms a hydrogel in water at room temperature, and that the hydrogel formation depends on the formation of self-assembled fibers. Above 28 °C, the molecules undergo a gel-to-sol transition, which is due to a fiber-to-micelle phase change. We provide a quantitative description of the Self-Assembled Fibrillar Network (SAFiN) hydrogel formed by the glyco-bolaampiphile. We identify the sol-gel transition temperature, the gelling time, and the minimal gel concentration; additionally, we explore the fibrillation mechanism as a function of time and temperature and determine the activation energy of the micelle-to-fiber phase transition. These parameters allow control of the elastic properties of the glyco-bolaamphiphile hydrogel: at 3 wt% and 25 °C, the elastic modulus G' is above the kPa range, while at 5 °C, G' can be tuned between 100 Pa and 20 kPa, by controlling the undercooling protocol.

12.
Biotechnol Bioeng ; 113(12): 2644-2651, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27317616

RESUMO

Bola-amphiphilic surfactants are molecules with fascinating properties. Their unique configuration consisting of a long hydrophobic spacer connecting two hydrophilic entities renders the molecule more water soluble than the average surfactant, but still allows formation of supramolecular structures. These properties make them extremely suitable for applications in in nanotechnology, electronics, and gene and drug delivery. In general, these compounds are obtained by chemical synthesis. We report here an efficient microbial production process for the fully green synthesis of bolaform surfactants. A sophorolipid-producing Starmerella bombicola yeast strain was disabled in its sophorolipid acetyltransferase and lactone esterase, which should logically result in synthesis of non-acetylated acidic sophorolipids; molecules with the classic amphiphilic structure. Surprisingly, also bolaform glycolipids were obtained, with an additional sophorose linked to the free carboxyl end of the acidic sophorolipids as confirmed by MS and NMR analysis. The obtained titers of 27.7 g/L total product are comparable to wild type values, and the novel molecules account for at least 74% of this. Bola-amphiphile biosynthesis proved to be attributed to the promiscuous activity of both UDP-glucosyltransferases UGTA1 and UGTB1 from the core sophorolipid pathway, displaying activity toward non-acetylated intermediates. The absence of acetyl groups seems to trigger formation of bolaform compounds starting from acidic sophorolipids. Hence, wild type S. bombicola produces these compounds only at marginal amounts in general not reaching detection limits. We created a strain knocked-out in its sophorolipid acetyltransferase and lactone esterase able to produce these novel compounds in economical relevant amounts, opening doors for the application of biological-derived bolaform structures. Biotechnol. Bioeng. 2016;113: 2644-2651. © 2016 Wiley Periodicals, Inc.


Assuntos
Ascomicetos/genética , Ascomicetos/metabolismo , Melhoramento Genético/métodos , Tensoativos/metabolismo , Acetiltransferases/genética , Ascomicetos/classificação , Esterases/genética , Técnicas de Silenciamento de Genes/métodos , Química Verde/métodos , Especificidade da Espécie , Tensoativos/isolamento & purificação
13.
Biotechnol Bioeng ; 113(3): 550-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26301720

RESUMO

Although sophorolipids (SLs) produced by S. bombicola are a real showcase for the industrialization of microbial biosurfactants, some important drawbacks are associated with this efficient biological process, e.g., the simultaneous production of acidic and lactonic SLs. Depending on the application, there is a requirement for the naturally produced mixture to be manipulated to give defined ratios of the components. Recently, the enzyme responsible for the lactonization of SLs was discovered. The discovery of the gene encoding this lactone esterase (sble) enabled the development of promising S. bombicola strains producing either solely lactonic (using a sble overexpression strain described in this paper: oe sble) or solely acidic SLs (using a sble deletion strain, which was recently described, but not characterized yet: Δsble). The new S. bombicola strains were used to investigate the production processes (fermentation and purification) of either lactonic or acidic SLs. The strains maintain the high inherent productivities of the wild-type or even perform slightly better and thus represent a realistic industrial opportunity. 100% acidic SLs with a mixed acetylation pattern were obtained for the Δsble strain, while the inherent capacity to selectively produce lactonic SLs was significantly increased (+42%) for the oe sble strain (99% lactonic SLs). Moreover, the regulatory effect of citrate on lactone SL formation for the wild-type was absent in this new strain, which indicates that it is more robust and better suited for the industrial production of lactonic SLs. Basic parameters were determined for the purified SLs, which confirm that the two new strains produce molecules with distinctive properties of which the application potential can now easily be investigated independently.


Assuntos
Produtos Biológicos/metabolismo , Esterases/metabolismo , Glicolipídeos/metabolismo , Lactonas/metabolismo , Saccharomycetales/enzimologia , Saccharomycetales/metabolismo , Tensoativos/metabolismo , Esterases/genética , Deleção de Genes , Expressão Gênica , Engenharia Metabólica , Saccharomycetales/genética
14.
Appl Microbiol Biotechnol ; 100(22): 9529-9541, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27251547

RESUMO

We recently discovered a novel enzyme in the exoproteome of Starmerella bombicola, which is structurally related to Candida antarctica lipase A. A knockout strain for this enzyme does no longer produce lactonic sophorolipids, prompting us to believe that this protein is the missing S. bombicola lactone esterase (SBLE). SBLE catalyzes a rather unusual reaction, i.e., an intramolecular esterification (lactonization) of acidic sophorolipids in an aqueous environment, which raised questions about its activity and mode of action. Here, we report the heterologous production of this enzyme in Pichia pastoris and its purification in a two-step strategy. Purified recombinant SBLE (rSBLE) was used to perform HPLC and liquid chromatography mass spectrometry (LCMS)-based assays with different sophorolipid mixtures. We experimentally confirmed that SBLE is able to perform ring closure of acetylated acidic sophorolipids. This substrate was selected for rSBLE kinetic studies to estimate the apparent values of K m . We established that rSBLE displays optimal activity in the pH range of 3.5 to 6 and has an optimal temperature in the range of 20 to 50 °C. Additionally, we generated a rSBLE mutant through site-directed mutagenesis of Ser194 in the predicted active site pocket and show that this mutant is lacking the ability to lactonize sophorolipids. We therefore propose that SBLE operates via the common serine hydrolase mechanism in which the catalytic serine residue is assisted by a His/Asp pair.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Glicolipídeos/metabolismo , Lactonas/metabolismo , Saccharomycetales/enzimologia , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/isolamento & purificação , Domínio Catalítico , Cromatografia Líquida , Clonagem Molecular , Deleção de Genes , Expressão Gênica , Concentração de Íons de Hidrogênio , Cinética , Espectrometria de Massas , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Pichia/genética , Pichia/metabolismo , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Temperatura
15.
Mol Microbiol ; 88(3): 501-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23516968

RESUMO

Sophorolipids are promising biological derived surfactants or detergents which find application in household cleaning, personal care and cosmetics. They are produced by specific yeast species and among those, Starmerella bombicola (former Candida bombicola) is the most widely used and studied one. Despite the commercial interest in sophorolipids, the biosynthetic pathway of these secondary metabolites remained hitherto partially unsolved. In this manuscript we present the sophorolipid gene cluster consisting of five genes directly involved in sophorolipid synthesis: a cytochrome P450 monooxygenase, two glucosyltransferases, an acetyltransferase and a transporter. It was demonstrated that disabling the first step of the pathway - cytochrome P450 monooxygenase mediated terminal or subterminal hydroxylation of a common fatty acid - results in complete abolishment of sophorolipid production. This phenotype could be complemented by supplying the yeast with hydroxylated fatty acids. On the other hand, knocking out the transporter gene yields mutants still able to secrete sophorolipids, though only at levels of 10% as compared with the wild type, suggesting alternative routes for secretion. Finally, it was proved that hampering sophorolipid production does not affect cell growth or cell viability in laboratory conditions, as can be expected for secondary metabolites.


Assuntos
Ascomicetos/genética , Ascomicetos/metabolismo , Glicolipídeos/biossíntese , Família Multigênica , Tensoativos/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas , Biotecnologia , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , DNA Fúngico/genética , Genes Fúngicos , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade da Espécie
16.
Appl Microbiol Biotechnol ; 98(8): 3449-61, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24531239

RESUMO

Biosurfactants (BSs) are a class of secondary metabolites representing a wide variety of structures that can be produced from renewable feedstock by a wide variety of micro-organisms. They have (potential) applications in the medical world, personal care sector, mining processes, food industry, cosmetics, crop protection, pharmaceuticals, bio-remediation, household detergents, paper and pulp industry, textiles, paint industries, etc. Especially glycolipid BSs like sophorolipids (SLs), rhamnolipids (RLs), mannosylerythritol lipids (MELs) and cellobioselipids (CBLs) have been described to provide significant opportunities to (partially) replace chemical surfactants. The major two factors currently limiting the penetration of BSs into the market are firstly the limited structural variety and secondly the rather high production price linked with the productivity. One of the keys to resolve the above mentioned bottlenecks can be found in the genetic engineering of natural producers. This could not only result in more efficient (economical) recombinant producers, but also in a diversification of the spectrum of available BSs as such resolving both limiting factors at once. Unraveling the genetics behind the biosynthesis of these interesting biological compounds is indispensable for the tinkering, fine tuning and rearrangement of these biological pathways with the aim of obtaining higher yields and a more extensive structural variety. Therefore, this review focuses on recent developments in the investigation of the biosynthesis, genetics and regulation of some important members of the family of the eukaryotic glycolipid BSs (MELs, CBLs and SLs). Moreover, recent biotechnological achievements and the industrial potential of engineered strains are discussed.


Assuntos
Biotecnologia/métodos , Eucariotos/genética , Eucariotos/metabolismo , Regulação da Expressão Gênica , Família Multigênica , Tensoativos/metabolismo
17.
Biotechnol Biofuels Bioprod ; 17(1): 89, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937850

RESUMO

BACKGROUND: Sophorolipids (SLs) are a class of natural, biodegradable surfactants that found their way as ingredients for environment friendly cleaning products, cosmetics and nanotechnological applications. Large-scale production relies on fermentations using the yeast Starmerella bombicola that naturally produces high titers of SLs from renewable resources. The resulting product is typically an extracellular mixture of acidic and lactonic congeners. Previously, we identified an esterase, termed Starmerella bombicola lactone esterase (SBLE), believed to act as an extracellular reverse lactonase to directly use acidic SLs as substrate. RESULTS: We here show based on newly available pure substrates, HPLC and mass spectrometric analysis, that the actual substrates of SBLE are in fact bola SLs, revealing that SBLE actually catalyzes an intramolecular transesterification reaction. Bola SLs contain a second sophorose attached to the fatty acyl group that acts as a leaving group during lactonization. CONCLUSIONS: The biosynthetic function by which the Starmerella bombicola 'lactone esterase' converts acidic SLs into lactonic SLs should be revised to a 'transesterase' where bola SL are the true intermediate. This insights paves the way for alternative engineering strategies to develop designer surfactants.

18.
Front Bioeng Biotechnol ; 12: 1347185, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419728

RESUMO

Sophorolipids, glycolipid biosurfactants derived from microorganisms such as Starmerella bombicola, possess distinctive surface-active and bioactive properties, holding potential applications in cosmetics, pharmaceuticals and bioremediation. However, the limited structural variability in wild-type sophorolipids restricts their properties and applications. To address this, metabolic engineering efforts have allowed to create a portfolio of molecules. In this study, we went one step further by chemically modifying microbially produced sophorosides, produced by an engineered S. bombicola. Twenty-four new sophoroside derivatives were synthesized, including sophoroside amines with varying alkyl chain lengths (ethyl to octadecyl) on the nitrogen atom and their corresponding quaternary ammonium salts. Additionally, six different microbially produced glycolipid biosurfactants were hydrogenated to achieve fully saturated lipid tails. These derivatives, along with microbially produced glycolipids and three benchmark biosurfactants (di-rhamnolipids, alkyl polyglucosides, cocamidopropyl betaine), were assessed for antimicrobial activity against bacteria (Bacillus subtilis, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa) and yeast (Candida albicans). Results indicated that microbially produced glycolipids, such as bola sophorosides, acidic sophorolipids and acidic glucolipids exhibit selective antimicrobial activity against the test organisms. Conversely, lactonic sophorolipids, sophoroside amines and quaternary ammonium salts display a broad antimicrobial activity. N-octyl, N-dodecyl and N-octadecyl derivatives exhibit the lowest minimal inhibitory concentrations, ranging from 0.014 to 20.0 mg mL-1. This study demonstrates the potential synergy of thoughtful biotechnology and targeted chemistry to precisely tailor glycolipid biosurfactants to meet specific requirements across applications.

19.
Front Chem ; 12: 1327113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38312346

RESUMO

Biosurfactants have garnered increased attention lately due to their superiority of their properties over fossil-derived counterparts. While the cost of production remains a significant hurdle to surpass synthetic surfactants, biosurfactants have been anticipated to gain a larger market share in the coming decades. Among these, glycolipids, a type of low-molecular-weight biosurfactant, stand out for their efficacy in reducing surface and interfacial tension, which made them highly sought-after for various surfactant-related applications. Glycolipids are composed of hydrophilic carbohydrate moieties linked to hydrophobic fatty acid chains through ester bonds that mainly include rhamnolipids, trehalose lipids, sophorolipids, and mannosylerythritol lipids. This review highlights the current landscape of glycolipids and covers specific glycolipid productivity and the diverse range of products found in the global market. Applications such as bioremediation, food processing, petroleum refining, biomedical uses, and increasing agriculture output have been discussed. Additionally, the latest advancements in production cost reduction for glycolipid and the challenges of utilizing second-generation feedstocks for sustainable production are also thoroughly examined. Overall, this review proposes a balance between environmental advantages, economic viability, and societal benefits through the optimized integration of secondary feedstocks in biosurfactant production.

20.
Biotechnol Bioeng ; 110(9): 2494-503, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23475585

RESUMO

The yeast Candida bombicola is capable of producing high amounts (400 g/L) of the biosurfactant sophorolipids. The genetic makeup of this industrially important yeast has recently been uncovered and molecular manipulation techniques have been developed. Hence, all tools for the development of new bioprocesses with C. bombicola are now available. As a proof of concept, the production of two totally different molecules was aimed for: the bioplastic polyhydroxyalkanoate (PHA) and a new-to-nature cellobioselipid-biosurfactant. Integration of the new functionalities at genomic loci necessary for sophorolipid production safeguards the new biomolecules from sophorolipid contamination, while taking advantage of the regulation of the sophorolipid gene cluster. A maximum yield of 2.0% wt/dwt PHA was obtained; furthermore, this is the first time cellobioselipid synthesis by a non-natural producer is reported. We here provided proof of concept that C. bombicola can be transformed into a platform organism for the production of tailor-made biomolecules.


Assuntos
Bioengenharia/métodos , Biotecnologia/métodos , Candida , Glicolipídeos/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Candida/genética , Candida/metabolismo , Cromatografia Líquida de Alta Pressão , Microbiologia Industrial , Espectrometria de Massas , Oxirredução , Tensoativos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA