Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 83(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28600313

RESUMO

The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula, as well as from diverse clades of uncultivated Chloroflexi, Acidobacteria, and Betaproteobacteria Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste.IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest undeveloped source of copper and nickel on Earth. Microorganisms are important catalysts for sulfide mineral oxidation, and research on extreme acidophiles has improved our ability to manage and remediate mine wastes. We found that the microbial assemblages associated with weathered rock from the Duluth Complex are dominated by organisms not widely associated with mine waste or mining-impacted environments, and we describe geochemical and experimental influences on community composition. This report will be a useful foundation for understanding the microbial biogeochemistry of moderately acidic mine waste from these and similar deposits.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Cobre/metabolismo , Sedimentos Geológicos/microbiologia , Níquel/metabolismo , Sulfetos/metabolismo , Bactérias/classificação , Bactérias/genética , Sedimentos Geológicos/química , Resíduos Industriais/análise , Ferro/metabolismo , Mineração , Minnesota , Filogenia
2.
Chemosphere ; 327: 138467, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36966934

RESUMO

Naturally occurring manganese (Mn) oxide minerals often form by microbial Mn(II) oxidation, resulting in nanocrystalline Mn(III/IV) oxide phases with high reactivity that can influence the uptake and release of many metals (e.g., Ni, Cu, Co, and Zn). During formation, the structure and composition of biogenic Mn oxides can be altered in the presence of other metals, which in turn affects the minerals' ability to bind these metals. These processes are further influenced by the chemistry of the aqueous environment and the type and physiology of microorganisms involved. Conditions extending to environments that typify mining and industrial wastewaters (e.g., increased salt content, low nutrient, and high metal concentrations) have not been well investigated thus limiting the understanding of metal interactions with biogenic Mn oxides. By integrating geochemistry, microscopic, and spectroscopic techniques, we examined the capacity of Mn oxides produced by the Mn(II)-oxidizing Ascomycete fungus Periconia sp. SMF1 isolated from the Minnesota Soudan Mine to remove the metal co-contaminant Co(II) from synthetic waters that are representative of mining wastewaters currently undergoing remediation efforts. We compared two different applied remediation strategies under the same conditions: coprecipitation of Co with mycogenic Mn oxides versus adsorption of Co with pre-formed fungal Mn oxides. Co(II) was effectively removed from solution by fungal Mn oxides through two different mechanisms: incorporation into, and adsorption onto, Mn oxides. These mechanisms were similar for both remediation strategies, indicating the general effectiveness of Co(II) removal by these oxides. The mycogenic Mn oxides were primarily a nanoparticulate, poorly-crystalline birnessite-like phases with slight differences depending on the chemical conditions during formation. The relatively fast and complete removal of aqueous Co(II) during biomineralization as well as the subsequent structural incorporation of Co into the Mn oxide structure illustrated a sustainable cycle capable of continuously remediating Co(II) from metal-polluted environments.


Assuntos
Ascomicetos , Águas Residuárias , Óxidos/química , Compostos de Manganês/química , Oxirredução , Metais , Minerais , Ascomicetos/metabolismo , Mineração , Adsorção
3.
Genome Announc ; 5(32)2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798167

RESUMO

We report the closed and annotated genome sequence of Sulfuriferula sp. strain AH1. Strain AH1 has a 2,877,007-bp chromosome that includes a partial Sox system for inorganic sulfur oxidation and a complete nitrogen fixation pathway. It also has a single 39,138-bp plasmid with genes for arsenic and mercury resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA