Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
FASEB J ; 34(8): 10699-10719, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32584506

RESUMO

Heart failure (HF) is an increasing global health crisis, affecting 40 million people and causing 50% mortality within 5 years of diagnosis. A fuller understanding of the genetic and environmental factors underlying HF, and novel therapeutic approaches to address it, are urgently warranted. Here, we discovered that cardiac-specific germline deletion in mice of potassium channel ß subunit-encoding Kcne2 (Kcne2CS-/- ) causes dilated cardiomyopathy and terminal HF (median longevity, 28 weeks). Mice with global Kcne2 deletion (Kcne2Glo-/- ) exhibit multiple HF risk factors, yet, paradoxically survived over twice as long as Kcne2CS-/- mice. Global Kcne2 deletion, which inhibits gastric acid secretion, reduced the relative abundance of species within Bacteroidales, a bacterial order that positively correlates with increased lifetime risk of human cardiovascular disease. Strikingly, the proton-pump inhibitor omeprazole similarly altered the microbiome and delayed terminal HF in Kcne2CS-/- mice, increasing survival 10-fold at 44 weeks. Thus, genetic or pharmacologic induction of hypochlorhydria and decreased gut Bacteroidales species are associated with lifespan extension in a novel HF model.


Assuntos
Acloridria/genética , Acloridria/mortalidade , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/mortalidade , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Animais , Bacteroides/crescimento & desenvolvimento , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/mortalidade , Feminino , Ácido Gástrico/metabolismo , Microbioma Gastrointestinal/genética , Deleção de Genes , Coração/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Risco
2.
FASEB J ; 33(9): 9762-9774, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31162977

RESUMO

The KCNE2 single transmembrane-spanning voltage-gated potassium (Kv) channel ß subunit is ubiquitously expressed and essential for normal function of a variety of cell types, often via regulation of the KCNQ1 Kv channel. A polymorphism upstream of KCNE2 is associated with reduced lung function in human populations, but the pulmonary consequences of KCNE2 gene disruption are unknown. Here, germline deletion of mouse Kcne2 reduced pulmonary expression of potassium channel α subunits Kcnq1 and Kcnb1 but did not alter expression of other Kcne genes. Kcne2 colocalized and coimmunoprecipitated with Kcnq1 in mouse lungs, suggesting the formation of pulmonary Kcnq1-Kcne2 potassium channel complexes. Kcne2 deletion reduced blood O2, increased CO2, increased pulmonary apoptosis, and increased inflammatory mediators TNF-α, IL-6, and leukocytes in bronchoalveolar lavage (BAL) fluids. Consistent with increased pulmonary vascular leakage, Kcne2 deletion increased plasma, BAL albumin, and the BAL:plasma albumin concentration ratio. Kcne2-/- mouse lungs exhibited baseline induction of the reperfusion injury salvage kinase pathway but were less able to respond via this pathway to imposed pulmonary ischemia/reperfusion injury (IRI). We conclude that KCNE2 regulates KCNQ1 in the lungs and is required for normal lung function and resistance to pulmonary IRI. Our data support a causal relationship between KCNE2 gene disruption and lung dysfunction.-Zhou, L., Köhncke, C., Hu, Z., Roepke, T. K., Abbott, G. W. The KCNE2 potassium channel ß subunit is required for normal lung function and resilience to ischemia and reperfusion injury.


Assuntos
Regulação da Expressão Gênica/fisiologia , Lesão Pulmonar/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Feminino , Mutação em Linhagem Germinativa , Inflamação/metabolismo , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Traumatismo por Reperfusão/genética , Canais de Potássio Shab/genética , Canais de Potássio Shab/metabolismo
3.
FASEB J ; 33(2): 2537-2552, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30289750

RESUMO

KCNE5 is an X-linked gene encoding KCNE5, an ancillary subunit to voltage-gated potassium (KV) channels. Human KCNE5 mutations are associated with atrial fibrillation (AF)- and Brugada syndrome (BrS)-induced cardiac arrhythmias that can arise from increased potassium current in cardiomyocytes. Seeking to establish underlying molecular mechanisms, we created and studied Kcne5 knockout ( Kcne5-/0) mice. Intracardiac ECG revealed that Kcne5 deletion caused ventricular premature beats, increased susceptibility to induction of polymorphic ventricular tachycardia (60 vs. 24% in Kcne5+/0 mice), and 10% shorter ventricular refractory period. Kcne5 deletion increased mean ventricular myocyte KV current density in the apex and also in the subpopulation of septal myocytes that lack fast transient outward current ( Ito,f). The current increases arose from an apex-specific increase in slow transient outward current-1 ( IKslow,1) (conducted by KV1.5) and Ito,f (conducted by KV4) and an increase in IKslow,2 (conducted by KV2.1) in both apex and septum. Kcne5 protein localized to the intercalated discs in ventricular myocytes, where KV2.1 was also detected in both Kcne5-/0 and Kcne5+/0 mice. In HL-1 cardiac cells and human embryonic kidney cells, KCNE5 and KV2.1 colocalized at the cell surface, but predominantly in intracellular vesicles, suggesting that Kcne5 deletion increases IK,slow2 by reducing KV2.1 intracellular sequestration. The human AF-associated mutation KCNE5-L65F negative shifted the voltage dependence of KV2.1-KCNE5 channels, increasing their maximum current density >2-fold, whereas BrS-associated KCNE5 mutations produced more subtle negative shifts in KV2.1 voltage dependence. The findings represent the first reported native role for Kcne5 and the first demonstrated Kcne regulation of KV2.1 in mouse heart. Increased KV current is a manifestation of KCNE5 disruption that is most likely common to both mouse and human hearts, providing a plausible mechanistic basis for human KCNE5-linked AF and BrS.-David, J.-P., Lisewski, U., Crump, S. M., Jepps, T. A., Bocksteins, E., Wilck, N., Lossie, J., Roepke, T. K., Schmitt, N., Abbott, G. W. Deletion in mice of X-linked, Brugada syndrome- and atrial fibrillation-associated Kcne5 augments ventricular KV currents and predisposes to ventricular arrhythmia.


Assuntos
Fibrilação Atrial/complicações , Síndrome de Brugada/complicações , Genes Ligados ao Cromossomo X , Ativação do Canal Iônico , Miócitos Cardíacos/patologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Taquicardia Ventricular/etiologia , Animais , Fibrilação Atrial/genética , Síndrome de Brugada/genética , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Potássio/metabolismo , Deleção de Sequência , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/patologia
4.
FASEB J ; 30(7): 2476-89, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26985008

RESUMO

Hyperaldosteronism is associated with an increased prevalence of atrial fibrillation (AF). Mutations in KCNE3 have been associated with AF, and Kcne3(-/-) mice exhibit hyperaldosteronism. In this study, we used recently developed Kcne3(-/-) mice to study atrial electrophysiology with respect to development of aldosterone-dependent AF. In invasive electrophysiology studies, Kcne3(-/-) mice displayed a reduced atrial effective refractory period (AERP) and inducible episodes of paroxysmal AF. The cellular arrhythmogenic correlate for AF predisposition was a significant increase in atrial Kv currents generated by the micromolar 4-aminopyridine-sensitive Kv current encoded by Kv1.5. Electrophysiological alterations in Kcne3(-/-) mice were aldosterone dependent and were associated with increased Rab4, -5, and -9-dependent recycling of Kv1.5 channels to the Z-disc/T-tubulus region and lateral membrane via activation of the Akt/AS160 pathway. Treatment with spironolactone inhibited Akt/AS160 phosphorylation, reduced Rab-dependent Kv1.5 recycling, normalized AERP and atrial Kv currents to the wild-type level, and reduced arrhythmia induction in Kcne3(-/-) mice. Kcne3 deletion in mice predisposes to AF by a heretofore unrecognized mechanism-namely, increased aldosterone-dependent Kv1.5 recycling via Rab GTPases. The findings uncover detailed molecular mechanisms underpinning a channelopathy-linked form of AF and emphasize the inevitability of considering extracardiac mechanisms in genetic arrhythmia syndromes.-Lisewski, U., Koehncke, C., Wilck, N., Buschmeyer, B., Pieske, B., Roepke, T. K. Increased aldosterone-dependent Kv1.5 recycling predisposes to pacing-induced atrial fibrillation in Kcne3(-/-) mice.


Assuntos
Aldosterona/metabolismo , Fibrilação Atrial/etiologia , Canal de Potássio Kv1.5/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Glândulas Suprarrenais/patologia , Animais , Fenômenos Eletrofisiológicos , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica/fisiologia , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , Canal de Potássio Kv1.5/genética , Proteínas de Membrana , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Proteínas Proto-Oncogênicas c-akt , Espironolactona/farmacologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
5.
Heart Vessels ; 31(8): 1380-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26686371

RESUMO

Cardiac function is one important determinant to maintain tissue oxygenation and is thus highly regulated. In this context, it is interesting that centrally mediated opioidergic influence on cardiac function has long been known. Only recently, KOR and DOR have been found to be expressed in healthy left ventricular myocardium in rats and colocalized with parts of the excitation-contraction-coupling system. However, several comments in literature exist doubting the existence of MOR in cardiac tissue. We, therefore, aimed to detect MOR in rat left ventricular cardiomyocytes, and to evaluate whether MOR and POMC are regulated during heart failure. After IRB approval, heart failure was induced using a modified infrarenal aortocaval fistula (ACF) in male Wistar rats. All rats of the control and ACF group were characterized by their morphometrics and hemodynamics and the existence of MOR and POMC was investigated by means of radioligand binding, double immunofluorescence confocal analysis, RT-PCR and Western blot. Membrane MOR selective binding sites were detected in the left ventricular myocardium, however, they were lower in abundance than KOR- and DOR-specific binding sites and B max of MOR could not be determined. In left ventricular cardiomyocytes, MOR colocalized with parts of the excitation-coupling mechanism, e.g., Cav1.2 of the cell membrane and invaginated T-tubules as well as the ryanodine receptor of the sarcoplasmatic reticulum. More importantly, MOR strongly colocalized with mitochondria of left ventricular cardiomyocytes. Volume overload was not associated with an altered expression of MOR and POMC on both mRNA and protein level. These findings provide evidence for the existence of MOR on the cell membrane, sarcoplasmatic reticulum and mitochondria in left ventricular cardiomyocytes in rats. However, heart failure does not result in an altered expression of the cardiac MOR-opioid system. Thus, MOR agonist treatment-commonly used in the clinical setting-might directly affect cardiac function, which needs to be evaluated in greater detail in the near future.


Assuntos
Membrana Celular/genética , Insuficiência Cardíaca/genética , Mitocôndrias/genética , Miócitos Cardíacos/metabolismo , Receptores Opioides mu/genética , Retículo Sarcoplasmático/genética , Animais , Modelos Animais de Doenças , Ventrículos do Coração/fisiopatologia , Hemodinâmica , Masculino , Ratos , Ratos Wistar , Análise de Regressão
6.
Pharmacol Res ; 102: 33-41, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26365878

RESUMO

Opioids have long been known for their analgesic effects and are therefore widely used in anesthesia and intensive care medicine. However, in the last decade research has focused on the opioidergic influence on cardiovascular function. This project thus aimed to detect the precise cellular localization of kappa opioid receptors (KOR) in left ventricular cardiomyocytes and to investigate putative changes in KOR and its endogenous ligand precursor peptide prodynorphin (PDYN) in response to heart failure. After IRB approval, heart failure was induced using a modified infrarenal aortocaval fistula (ACF) in male Wistar rats. All rats of the control and ACF group were characterized by their morphometrics and hemodynamics. In addition, the existence and localization as well as adaptive changes of KOR and PDYN were investigated using radioligand binding, double immunofluorescence confocal analysis, RT-PCR and Western blot. Similar to the brain and spinal cord, [(3)H]U-69593 KOR selective binding sites were detected the left ventricle (LV). KOR colocalized with Cav1.2 of the outer plasma membrane and invaginated T-tubules and intracellular with the ryanodine receptor of the sarcoplasmatic reticulum. Interestingly, KOR could also be detected in mitochondria of rat LV cardiomyocytes. As a consequence of heart failure, KOR and PDYN were up-regulated on the mRNA and protein level in the LV. These findings suggest that the cardiac kappa opioidergic system might modulate rat cardiomyocyte function during heart failure.


Assuntos
Volume Cardíaco/fisiologia , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Miocárdio/metabolismo , Receptores Opioides kappa/metabolismo , Regulação para Cima/fisiologia , Animais , Benzenoacetamidas/farmacologia , Canais de Cálcio Tipo L/metabolismo , Volume Cardíaco/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/patologia , Insuficiência Cardíaca/patologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Pirrolidinas/farmacologia , Ratos , Ratos Wistar , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia
7.
Nature ; 453(7194): 524-8, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18432194

RESUMO

The functional heart is comprised of distinct mesoderm-derived lineages including cardiomyocytes, endothelial cells and vascular smooth muscle cells. Studies in the mouse embryo and the mouse embryonic stem cell differentiation model have provided evidence indicating that these three lineages develop from a common Flk-1(+) (kinase insert domain protein receptor, also known as Kdr) cardiovascular progenitor that represents one of the earliest stages in mesoderm specification to the cardiovascular lineages. To determine whether a comparable progenitor is present during human cardiogenesis, we analysed the development of the cardiovascular lineages in human embryonic stem cell differentiation cultures. Here we show that after induction with combinations of activin A, bone morphogenetic protein 4 (BMP4), basic fibroblast growth factor (bFGF, also known as FGF2), vascular endothelial growth factor (VEGF, also known as VEGFA) and dickkopf homolog 1 (DKK1) in serum-free media, human embryonic-stem-cell-derived embryoid bodies generate a KDR(low)/C-KIT(CD117)(neg) population that displays cardiac, endothelial and vascular smooth muscle potential in vitro and, after transplantation, in vivo. When plated in monolayer cultures, these KDR(low)/C-KIT(neg) cells differentiate to generate populations consisting of greater than 50% contracting cardiomyocytes. Populations derived from the KDR(low)/C-KIT(neg) fraction give rise to colonies that contain all three lineages when plated in methylcellulose cultures. Results from limiting dilution studies and cell-mixing experiments support the interpretation that these colonies are clones, indicating that they develop from a cardiovascular colony-forming cell. Together, these findings identify a human cardiovascular progenitor that defines one of the earliest stages of human cardiac development.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Miócitos Cardíacos/citologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ativinas/farmacologia , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/transplante , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-kit/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/deficiência , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
8.
FASEB J ; 25(2): 727-36, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21084694

RESUMO

Targeted deletion of the Kcne2 potassium channel ß subunit gene ablates gastric acid secretion and predisposes to gastric neoplasia in mice. Here, we discovered that Kcne2 deletion basolaterally reroutes the Kcnq1 α subunit in vivo in parietal cells (PCs), in which the normally apical location of the Kcnq1-Kcne2 channel facilitates its essential role in gastric acid secretion. Quantitative RT-PCR and Western blotting revealed that Kcne2 deletion remodeled fundic Kcne3 (2.9±0.8-fold mRNA increase, n=10; 5.3±0.4-fold protein increase, n=7) but not Kcne1, 4, or 5, and resulted in basolateral Kcnq1-Kcne3 complex formation in Kcne2(-/-) PCs. Concomitant targeted deletion of Kcne3 (creating Kcne2(-/-)Kcne3(-/-) mice) restored PC apical Kcnq1 localization without Kcne1, 4, or 5 remodeling (assessed by quantitative RT-PCR; n=5-10), indicating Kcne3 actively, basolaterally rerouted Kcnq1 in Kcne2(-/-) PCs. Despite this, Kcne3 deletion exacerbated gastric hyperplasia in Kcne2(-/-) mice, and both hypochlorhydria and hyperplasia in Kcne2(+/-) mice, suggesting that Kcne3 up-regulation was beneficial in Kcne2-depleted PCs. The findings reveal, in vivo, Kcne-dependent α subunit polarized trafficking and the existence and consequences of potassium channel ß subunit remodeling.


Assuntos
Regulação da Expressão Gênica/fisiologia , Canal de Potássio KCNQ1/metabolismo , Transporte Proteico/fisiologia , Animais , Feminino , Deleção de Genes , Hiperplasia/genética , Hiperplasia/patologia , Canal de Potássio KCNQ1/genética , Masculino , Camundongos , Células Parietais Gástricas/metabolismo , Subunidades Proteicas , Estômago/patologia , Gastropatias/genética , Gastropatias/patologia
9.
FASEB J ; 25(12): 4264-73, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21859894

RESUMO

Cerebrospinal fluid (CSF) is crucial for normal function and mechanical protection of the CNS. The choroid plexus epithelium (CPe) is primarily responsible for secreting CSF and regulating its composition by mechanisms currently not fully understood. Previously, the heteromeric KCNQ1-KCNE2 K(+) channel was functionally linked to epithelial processes including gastric acid secretion and thyroid hormone biosynthesis. Here, using Kcne2(-/-) tissue as a negative control, we found cerebral expression of KCNE2 to be markedly enriched in the CPe apical membrane, where we also discovered expression of KCNQ1. Targeted Kcne2 gene deletion in C57B6 mice increased CPe outward K(+) current 2-fold. The Kcne2 deletion-enhanced portion of the current was inhibited by XE991 (10 µM) and margatoxin (10 µM) but not by dendrotoxin (100 nM), indicating that it arose from augmentation of KCNQ subfamily and KCNA3 but not KCNA1 K(+) channel activity. Kcne2 deletion in C57B6 mice also altered the polarity of CPe KCNQ1 and KCNA3 trafficking, hyperpolarized the CPe membrane by 9 ± 2 mV, and increased CSF [Cl(-)] by 14% compared with wild-type mice. These findings constitute the first report of CPe dysfunction caused by cation channel gene disruption and suggest that KCNE2 influences blood-CSF anion flux by regulating KCNQ1 and KCNA3 in the CPe.


Assuntos
Plexo Corióideo/metabolismo , Canal de Potássio KCNQ1/metabolismo , Canal de Potássio Kv1.3/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Cloretos/sangue , Cloretos/líquido cefalorraquidiano , Epitélio/metabolismo , Transporte de Íons , Canal de Potássio KCNQ1/química , Canal de Potássio Kv1.3/química , Potenciais da Membrana , Camundongos , Camundongos Knockout , Modelos Biológicos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/deficiência , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Subunidades Proteicas
10.
J Membr Biol ; 228(1): 1-14, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19219384

RESUMO

Kv2.1 is a voltage-gated potassium (Kv) channel alpha-subunit expressed in mammalian heart and brain. MinK-related peptides (MiRPs), encoded by KCNE genes, are single-transmembrane domain ancillary subunits that form complexes with Kv channel alpha-subunits to modify their function. Mutations in human MinK (KCNE1) and MiRP1 (KCNE2) are associated with inherited and acquired forms of long QT syndrome (LQTS). Here, coimmunoprecipitations from rat heart tissue suggested that both MinK and MiRP1 form native cardiac complexes with Kv2.1. In whole-cell voltage-clamp studies of subunits expressed in CHO cells, rat MinK and MiRP1 reduced Kv2.1 current density three- and twofold, respectively; slowed Kv2.1 activation (at +60 mV) two- and threefold, respectively; and slowed Kv2.1 deactivation less than twofold. Human MinK slowed Kv2.1 activation 25%, while human MiRP1 slowed Kv2.1 activation and deactivation twofold. Inherited mutations in human MinK and MiRP1, previously associated with LQTS, were also evaluated. D76N-MinK and S74L-MinK reduced Kv2.1 current density (threefold and 40%, respectively) and slowed deactivation (60% and 80%, respectively). Compared to wild-type human MiRP1-Kv2.1 complexes, channels formed with M54T- or I57T-MiRP1 showed greatly slowed activation (tenfold and fivefold, respectively). The data broaden the potential roles of MinK and MiRP1 in cardiac physiology and support the possibility that inherited mutations in either subunit could contribute to cardiac arrhythmia by multiple mechanisms.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio Shab/metabolismo , Animais , Western Blotting , Células CHO , Cricetinae , Cricetulus , Eletrofisiologia , Imunofluorescência , Humanos , Imunoprecipitação , Mutação , Miocárdio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Potássio Shab/genética
11.
FASEB J ; 22(10): 3648-60, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18603586

RESUMO

Mutations in human KCNE2, which encodes the MiRP1 potassium channel ancillary subunit, associate with long QT syndrome (LQTS), a defect in ventricular repolarization. The precise cardiac role of MiRP1 remains controversial, in part, because it has marked functional promiscuity in vitro. Here, we disrupted the murine kcne2 gene to define the role of MiRP1 in murine ventricles. kcne2 disruption prolonged ventricular action potential duration (APD), suggestive of reduced repolarization capacity. Accordingly, kcne2 (-/-) ventricles exhibited a 50% reduction in I(K,slow1), generated by Kv1.5--a previously unknown partner for MiRP1. I(to,f), generated by Kv4 alpha subunits, was also diminished, by approximately 25%. Ventricular MiRP1 protein coimmunoprecipitated with native Kv1.5 and Kv4.2 but not Kv1.4 or Kv4.3. Unexpectedly, kcne2 (-/-) ventricular membrane fractions exhibited 50% less mature Kv1.5 protein than wild type, and disruption of Kv1.5 trafficking to the intercalated discs. Consistent with the reduction in ventricular K(+) currents and prolonged ventricular APD, kcne2 deletion lengthened the QT(c) under sevoflurane anesthesia. Thus, targeted disruption of kcne2 has revealed a novel cardiac partner for MiRP1, a novel role for MiRPs in alpha subunit targeting in vivo, and a role for MiRP1 in murine ventricular repolarization with parallels to that proposed for the human heart.


Assuntos
Sistema de Condução Cardíaco/fisiopatologia , Ventrículos do Coração/fisiopatologia , Síndrome do QT Longo/fisiopatologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Deleção de Sequência , Anestésicos Inalatórios/farmacologia , Animais , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Imunoprecipitação , Canal de Potássio Kv1.5/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/patologia , Éteres Metílicos/farmacologia , Camundongos , Camundongos Mutantes , Células Musculares/metabolismo , Células Musculares/patologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Sevoflurano , Canais de Potássio Shal/metabolismo
12.
Cardiovasc Res ; 77(1): 98-106, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18006462

RESUMO

AIMS: Auditory stimulus-induced long QT syndrome (LQTS) is almost exclusively linked to mutations in the hERG potassium channel, which generates the I Kr ventricular repolarization current. Here, a young woman with prior episodes of auditory stimulus-induced syncope presented with LQTS and ventricular fibrillation (VF) with hypomagnesaemia and hypocalcaemia after completing a marathon, followed by subsequent VF with hypokalaemia. The patient was found to harbour a KCNE2 gene mutation encoding a T10M amino acid substitution in MiRP1, an ancillary subunit that co-assembles with and functionally modulates hERG. Other family members with the mutation were asymptomatic, and the proband had no mutations in hERG or other LQTS-linked cardiac ion channel genes. The T10M mutation was absent from 578 unrelated, ethnically matched control chromosomes analysed here and was previously described only once-in an LQTS patient-but not functionally characterized. METHODS AND RESULTS: T10M-MiRP1-hERG currents were assessed using whole-cell voltage clamp of transfected Chinese Hamster ovary cells. T10M-MiRP1-hERG channels showed

Assuntos
Estimulação Acústica , Mutação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Fibrilação Ventricular/genética , Desequilíbrio Hidroeletrolítico/complicações , Adulto , Animais , Células CHO , Cálcio/sangue , Cricetinae , Cricetulus , Canais de Potássio Éter-A-Go-Go/fisiologia , Feminino , Humanos , Canal de Potássio KCNQ1/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Fibrilação Ventricular/etiologia
13.
J Electrocardiol ; 40(6 Suppl): S42-6, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17993327

RESUMO

Voltage-gated potassium (Kv) channels generate the outward K(+) ion currents that constitute the primary force in ventricular repolarization. Voltage-gated potassium channels comprise tetramers of pore-forming alpha subunits and, in probably most cases in vivo, ancillary or beta subunits that help define the properties of the Kv current generated. Ancillary subunits can be broadly categorized as cytoplasmic or transmembrane and can modify Kv channel trafficking, conductance, gating, ion selectivity, regulation, and pharmacology. Because of their often profound effects on Kv channel function, studies of the molecular correlates of ventricular repolarization must take into account ancillary subunits as well as alpha subunits. Cytoplasmic ancillary subunits include the Kv beta subunits, which regulate a range of Kv channels and may link channel gating to redox potential, and the KChIPs, which appear most often associated with Kv4 subfamily channels that generate the ventricular I(to) current. Transmembrane ancillary subunits include the MinK-related proteins (MiRPs) encoded by KCNE genes, which modulate members of most Kv alpha subunit subfamilies, and the putative 12-transmembrane domain KCR1 protein, which modulates hERG. In some cases, such as the ventricular I(Ks) channel complex, it is well established that the KCNQ1 alpha subunit must coassemble with the MinK (KCNE1) single-transmembrane domain ancillary subunit for recapitulation of the characteristic, unusually slowly-activating I(Ks) current. In other cases, it is not so clear-cut, and in particular, the roles of the other MiRPs (1-4) in regulating cardiac Kv channels such as KCNQ1 and hERG in vivo are under debate. MiRP1 alters hERG function and pharmacology, and inherited MiRP1 mutations are associated with inherited and acquired arrhythmias, but controversy exists over the native role of MiRP1 in regulating hERG (and therefore ventricular I(Kr)) in vivo. Some ancillary subunits may exhibit varied expression to shape spatial Kv current variation, for example, KChIP2 and the epicardial-endocardial I(to) current density gradient. Indeed, it is likely that most native ventricular Kv channels exhibit temporal and spatial heterogeneity of subunit composition, complicating both modeling of their functional impact on the ventricular action potential and design of specific current-targeted compounds. Here, we discuss current thinking and lines of experimentation aimed at resolving the complexities of the Kv channel complexes that repolarize the human ventricular myocardium.


Assuntos
Potenciais de Ação , Sistema de Condução Cardíaco/fisiopatologia , Ventrículos do Coração/fisiopatologia , Canais Iônicos/metabolismo , Potenciais da Membrana , Modelos Cardiovasculares , Isquemia Miocárdica/fisiopatologia , Animais , Humanos , Ativação do Canal Iônico
14.
Vascul Pharmacol ; 44(2): 90-106, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16344000

RESUMO

Ion channels control electrical excitability in living cells. In mammalian heart, the opposing actions of Na(+) and Ca(2+) ion influx, and K(+) ion efflux, through cardiac ion channels determine the morphology and duration of action potentials in cardiac myocytes, thus controlling the heartbeat. The last decade has seen a leap in our understanding of the molecular genetic origins of inherited cardiac arrhythmia, largely through identification of mutations in cardiac ion channels and the proteins that regulate them. Further, recent advances have shown that 'acquired arrhythmias', which occur more commonly than inherited arrhythmias, arise due to a variety of environmental factors including side effects of therapeutic drugs and often have a significant genetic component. Here, we review the pharmacogenetics of cardiac ion channels-the interplay between genetic and pharmacological factors that underlie human cardiac arrhythmias.


Assuntos
Arritmias Cardíacas/genética , Ativação do Canal Iônico/genética , Canais Iônicos/genética , Miócitos Cardíacos/metabolismo , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Ensaios Clínicos como Assunto , Variação Genética , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/metabolismo , Canal de Potássio Kv1.5/efeitos dos fármacos , Canal de Potássio Kv1.5/genética , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Farmacogenética , Polimorfismo Genético , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo
15.
Sci Rep ; 6: 23118, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26984260

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is an increasing health problem worldwide, with genetic, epigenetic, and environmental components. Here, we describe the first example of NAFLD caused by genetic disruption of a mammalian potassium channel subunit. Mice with germline deletion of the KCNE2 potassium channel ß subunit exhibited NAFLD as early as postnatal day 7. Using mouse genetics, histology, liver damage assays and transcriptomics we discovered that iron deficiency arising from KCNE2-dependent achlorhydria is a major factor in early-onset NAFLD in Kcne2(─/─) mice, while two other KCNE2-dependent defects did not initiate NAFLD. The findings uncover a novel genetic basis for NAFLD and an unexpected potential factor in human KCNE2-associated cardiovascular pathologies, including atherosclerosis.


Assuntos
Anemia Ferropriva/complicações , Hepatopatia Gordurosa não Alcoólica/etiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Animais , Proteína C-Reativa/análise , Dieta Hiperlipídica , Feminino , Redes Reguladoras de Genes , Mutação em Linhagem Germinativa , Homocisteína/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/deficiência , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Deleção de Sequência , Transcriptoma , Triglicerídeos/sangue
16.
Artigo em Inglês | MEDLINE | ID: mdl-25520848

RESUMO

UNLABELLED: Neuroendocrine tumours (NETs) represent a broad spectrum of tumours, of which the serotonin-producing carcinoid is the most common and has been shown to cause right ventricular heart failure. However, an association between heart failure and NETs other than carcinoid has not been established so far. In this case report, we describe a 51-year-old patient with a glucagon-producing NET of the pancreas who developed acute heart failure and even cardiogenic shock despite therapy. Heart failure eventually regressed after initialising i.v. treatment with the somatostatin analogue octreotide. Chromogranin A as a tumour marker was shown to be significantly elevated, and it decreased with clinical improvement of the patient. The effects of long-time stimulation of glucagon on the myocardium have not been studied yet; however, sarcoplasmic reticulum calcium leak can be discussed as a possible mechanism for glucagon-induced heart failure. LEARNING POINTS: Glucagonoma can be a cause for heart failure.i.v. infusion of octreotide can be successfully used to treat glucagonoma-induced acute heart failure.We suggest that cardiac function should be monitored in all NET patients.

17.
Sci Signal ; 7(315): ra22, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24595108

RESUMO

Na(+)-coupled solute transport is crucial for the uptake of nutrients and metabolic precursors, such as myo-inositol, an important osmolyte and precursor for various cell signaling molecules. We found that various solute transporters and potassium channel subunits formed complexes and reciprocally regulated each other in vitro and in vivo. Global metabolite profiling revealed that mice lacking KCNE2, a K(+) channel ß subunit, showed a reduction in myo-inositol concentration in cerebrospinal fluid (CSF) but not in serum. Increased behavioral responsiveness to stress and seizure susceptibility in Kcne2(-/-) mice were alleviated by injections of myo-inositol. Suspecting a defect in myo-inositol transport, we found that KCNE2 and KCNQ1, a voltage-gated potassium channel α subunit, colocalized and coimmunoprecipitated with SMIT1, a Na(+)-coupled myo-inositol transporter, in the choroid plexus epithelium. Heterologous coexpression demonstrated that myo-inositol transport by SMIT1 was augmented by coexpression of KCNQ1 but was inhibited by coexpression of both KCNQ1 and KCNE2, which form a constitutively active, heteromeric K(+) channel. SMIT1 and the related transporter SMIT2 were also inhibited by a constitutively active mutant form of KCNQ1. The activities of KCNQ1 and KCNQ1-KCNE2 were augmented by SMIT1 and the glucose transporter SGLT1 but were suppressed by SMIT2. Channel-transporter signaling complexes may be a widespread mechanism to facilitate solute transport and electrochemical crosstalk.


Assuntos
Canal de Potássio KCNQ1/metabolismo , Complexos Multiproteicos/metabolismo , Neurônios/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Simportadores/metabolismo , Animais , Células CHO , Líquido Cefalorraquidiano/metabolismo , Plexo Corióideo/metabolismo , Cromatografia Líquida de Alta Pressão , Cricetinae , Cricetulus , Imunofluorescência , Imunoprecipitação , Inositol/sangue , Espectrometria de Massas , Metaboloma , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Oócitos/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Transportador 1 de Glucose-Sódio/metabolismo , Xenopus laevis
18.
J Vis Exp ; (73): e50145, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23524949

RESUMO

KCNE genes encode for a small family of Kv channel ancillary subunits that form heteromeric complexes with Kv channel alpha subunits to modify their functional properties. Mutations in KCNE genes have been found in patients with cardiac arrhythmias such as the long QT syndrome and/or atrial fibrillation. However, the precise molecular pathophysiology that leads to these diseases remains elusive. In previous studies the electrophysiological properties of the disease causing mutations in these genes have mostly been studied in heterologous expression systems and we cannot be sure if the reported effects can directly be translated into native cardiomyocytes. In our laboratory we therefore use a different approach. We directly study the effects of KCNE gene deletion in isolated cardiomyocytes from knockout mice by cellular electrophysiology - a unique technique that we describe in this issue of the Journal of Visualized Experiments. The hearts from genetically engineered KCNE mice are rapidly excised and mounted onto a Langendorff apparatus by aortic cannulation. Free Ca(2+) in the myocardium is bound by EGTA, and dissociation of cardiac myocytes is then achieved by retrograde perfusion of the coronary arteries with a specialized low Ca(2+) buffer containing collagenase. Atria, free right ventricular wall and the left ventricle can then be separated by microsurgical techniques. Calcium is then slowly added back to isolated cardiomyocytes in a multiple step comprising washing procedure. Atrial and ventricular cardiomyocytes of healthy appearance with no spontaneous contractions are then immediately subjected to electrophysiological analyses by patch clamp technique or other biochemical analyses within the first 6 hours following isolation.


Assuntos
Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Cálcio/metabolismo , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Camundongos , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/análise
20.
Int J Biochem Cell Biol ; 42(11): 1767-70, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20688187

RESUMO

Inherited Long QT Syndrome (LQTS), a cardiac arrhythmia that predisposes to the often lethal ventricular fibrillation, is commonly linked to mutations in KCNQ1. The KCNQ1 voltage-gated K(+) channel α subunit passes ventricular myocyte K(+) current that helps bring a timely end to each heart-beat. KCNQ1, like many K(+) channel α subunits, is regulated by KCNE ß subunits, inherited mutations in which also associate with LQTS. KCNQ1 and KCNE mutations are also associated with atrial fibrillation. It has long been known that thyroid status strongly influences cardiac function, and that thyroid dysfunction causes abnormal cardiac structure and rhythm. We recently discovered that KCNQ1 and KCNE2 form a thyroid-stimulating hormone-stimulated K(+) channel in the thyroid that is required for normal thyroid hormone biosynthesis. Here, we review this novel genetic link between cardiac and thyroid physiology and pathology, and its potential influence upon future therapeutic strategies in cardiac and thyroid disease.


Assuntos
Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Doenças da Glândula Tireoide/genética , Doenças da Glândula Tireoide/fisiopatologia , Animais , Arritmias Cardíacas/metabolismo , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Humanos , Hipertireoidismo/genética , Hipertireoidismo/metabolismo , Hipertireoidismo/fisiopatologia , Hipotireoidismo/genética , Hipotireoidismo/metabolismo , Hipotireoidismo/fisiopatologia , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/fisiopatologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Doenças da Glândula Tireoide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA