Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 20(19): 20920-33, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23037216

RESUMO

Empirically-based satellite estimates of chlorophyll a [Chl] (e.g. OC3) are an important indicator of phytoplankton biomass. To correctly interpret [Chl] variability, estimates must be accurate and sources of algorithm errors known. While the underlying assumptions of band ratio algorithms such as OC3 have been tacitly hypothesized (i.e. CDOM and phytoplankton absorption covary), the influence of component absorption and scattering on the shape of the algorithm and estimated [Chl] error has yet to be explicitly revealed. We utilized the NOMAD bio-optical data set to examine variations between satellite estimated [Chl] and in situ values. We partitioned the variability into (a) signal contamination and (b) natural phytoplankton variability (variability in chlorophyll-specific phytoplankton absorption). Not surprisingly, the OC3 best-fit curve resulted from a balance between these two different sources of variation confirming the bias by detrital absorption on global scale. Unlike previous descriptions of empirical [Chl] algorithms, our study (a) quantified the mean detrital:phytoplankton absorption as ~1:1in the global NOMAD data set, and (b) removed detrital (CDOM + non-algal particle) absorption in radiative transfer models directly showing that the scale of the remaining variability in the band ratio algorithm was dominated by phytoplankton absorption cross section.


Assuntos
Algoritmos , Clorofila/análise , Fenômenos Ópticos , Comunicações Via Satélite , Absorção , Clorofila A , Bases de Dados como Assunto , Fitoplâncton/química , Água do Mar/química , Estados Unidos , United States National Aeronautics and Space Administration
2.
Appl Opt ; 38(24): 5096-103, 1999 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18324002

RESUMO

An algorithm is described and evaluated for determining the absorption and backscattering coefficients a(z) and bb(z) from measurements of the nadir-viewing radiance Lu(z) and downward irradiance Ed(z). The method, derived from radiative transfer theory, is similar to a previously proposed one for Eu(z) and Ed(z)and both methods are demonstrated with numerical simulations and field data. Numerical simulations and a sensitivity analysis show that good estimates of a(z) and bb(z) can be obtained if the assumed scattering phase function is approximately correct. In an experiment in Long Island Sound, estimates of a(z) derived with these methods agreed well with those obtained from an in situ reflecting tube instrument.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA