Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(49): e2306381120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38019867

RESUMO

Inteins are self-splicing protein elements found in viruses and all three domains of life. How the DNA encoding these selfish elements spreads within and between genomes is poorly understood, particularly in eukaryotes where inteins are scarce. Here, we show that the nuclear genomes of three strains of Anaeramoeba encode between 45 and 103 inteins, in stark contrast to four found in the most intein-rich eukaryotic genome described previously. The Anaeramoeba inteins reside in a wide range of proteins, only some of which correspond to intein-containing proteins in other eukaryotes, prokaryotes, and viruses. Our data also suggest that viruses have contributed to the spread of inteins in Anaeramoeba and the colonization of new alleles. The persistence of Anaeramoeba inteins might be partly explained by intragenomic movement of intein-encoding regions from gene to gene. Our intein dataset greatly expands the spectrum of intein-containing proteins and provides insights into the evolution of inteins in eukaryotes.


Assuntos
Inteínas , Processamento de Proteína , Inteínas/genética , Eucariotos/genética , Proteínas/genética , Genoma
2.
Nucleic Acids Res ; 51(7): 3185-3204, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36912092

RESUMO

We have uncovered a role for the promyelocytic leukemia (PML) gene and novel PML-like DEDDh exonucleases in the maintenance of genome stability through the restriction of LINE-1 (L1) retrotransposition in jawed vertebrates. Although the mammalian PML protein forms nuclear bodies, we found that the spotted gar PML ortholog and related proteins in fish function as cytoplasmic DEDDh exonucleases. In contrast, PML proteins from amniote species localized both to the cytoplasm and formed nuclear bodies. We also identified the PML-like exon 9 (Plex9) genes in teleost fishes that encode exonucleases. Plex9 proteins resemble TREX1 but are unique from the TREX family and share homology to gar PML. We also characterized the molecular evolution of TREX1 and the first non-mammalian TREX1 homologs in axolotl. In an example of convergent evolution and akin to TREX1, gar PML and zebrafish Plex9 proteins suppressed L1 retrotransposition and could complement TREX1 knockout in mammalian cells. Following export to the cytoplasm, the human PML-I isoform also restricted L1 through its conserved C-terminus by enhancing ORF1p degradation through the ubiquitin-proteasome system. Thus, PML first emerged as a cytoplasmic suppressor of retroelements, and this function is retained in amniotes despite its new role in the assembly of nuclear bodies.


Assuntos
Gnathostoma , Retroelementos , Animais , Humanos , Mamíferos/genética , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Isoformas de Proteínas/genética , Retroelementos/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Gnathostoma/enzimologia , Gnathostoma/genética , Gnathostoma/metabolismo
3.
Syst Biol ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843172

RESUMO

Biochemical constraints on the admissible amino acids at specific sites in proteins lead to heterogeneity of the amino acid substitution process over sites in alignments. It is well known that phylogenetic models of protein sequence evolution that do not account for site heterogeneity are prone to long-branch attraction (LBA) artifacts. Profile mixture models were developed to model heterogeneity of preferred amino acids at sites via a finite distribution of site classes each with a distinct set of equilibrium amino acid frequencies. However, it is unknown whether the large number of parameters in such models associated with the many amino acid frequency vectors can adversely affect tree topology estimates because of over-parameterization. Here we demonstrate theoretically that for long sequences, over-parameterization does not create problems for estimation with profile mixture models. Under mild conditions, tree, amino acid frequencies, and other model parameters converge to true values as sequence length increases, even when there are large numbers of components in the frequency profile distributions. Because large sample theory does not necessarily imply good behavior for shorter alignments we explore the performance of these models with short alignments simulated with tree topologies that are prone to LBA artifacts. We find that over-parameterization is not a problem for complex profile mixture models even when there are many amino acid frequency vectors. In fact, simple models with few site classes behave poorly. Interestingly, we also found that misspecification of the amino acid frequency vectors does not lead to increased LBA artifacts as long as the estimated cumulative distribution function of the amino acid frequencies at sites adequately approximates the true one. In contrast, misspecification of the amino acid exchangeability rates can severely negatively affect parameter estimation. Finally, we explore the effects of including in the profile mixture model an additional 'F-class' representing the overall frequencies of amino acids in the data set. Surprisingly, the F-class does not help parameter estimation significantly and can decrease the probability of correct tree estimation, depending on the scenario, even though it tends to improve likelihood scores.

4.
PLoS Biol ; 19(8): e3001365, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34358228

RESUMO

Phylogenomic analyses of hundreds of protein-coding genes aimed at resolving phylogenetic relationships is now a common practice. However, no software currently exists that includes tools for dataset construction and subsequent analysis with diverse validation strategies to assess robustness. Furthermore, there are no publicly available high-quality curated databases designed to assess deep (>100 million years) relationships in the tree of eukaryotes. To address these issues, we developed an easy-to-use software package, PhyloFisher (https://github.com/TheBrownLab/PhyloFisher), written in Python 3. PhyloFisher includes a manually curated database of 240 protein-coding genes from 304 eukaryotic taxa covering known eukaryotic diversity, a novel tool for ortholog selection, and utilities that will perform diverse analyses required by state-of-the-art phylogenomic investigations. Through phylogenetic reconstructions of the tree of eukaryotes and of the Saccharomycetaceae clade of budding yeasts, we demonstrate the utility of the PhyloFisher workflow and the provided starting database to address phylogenetic questions across a large range of evolutionary time points for diverse groups of organisms. We also demonstrate that undetected paralogy can remain in phylogenomic "single-copy orthogroup" datasets constructed using widely accepted methods such as all vs. all BLAST searches followed by Markov Cluster Algorithm (MCL) clustering and application of automated tree pruning algorithms. Finally, we show how the PhyloFisher workflow helps detect inadvertent paralog inclusions, allowing the user to make more informed decisions regarding orthology assignments, leading to a more accurate final dataset.


Assuntos
Eucariotos/genética , Filogenia , Software
5.
J Vasc Interv Radiol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901491

RESUMO

Percutaneous transhepatic lymphatic embolization (PTLE) and peroral esophagogastroduodenoscopy (EGD) duodenal mucosal radiofrequency ablation (RFA) were performed to manage protein-losing enteropathy (PLE) in patients with congenital heart disease (CHD). Five procedures were performed in 4 patients (M/F = 3/1, median age: 49 years [range 31-71 years]). Transhepatic lymphangiography demonstrated abnormal peri-duodenal lymphatic channels. After methylene blue injection through transhepatic access, subsequent EGD evaluation showed methylene blue extravasation at various sites in the duodenal mucosa. Endoscopic RFA of the leakage sites followed by PTLE using 3:1 ethiodized oil to n-butyl cyanoacrylate glue resulted in improved symptoms and serum albumin (pre-procedure: 2.6 g/dL ± 0.2; post-procedure: 3.5 g/dL ± 0.4, p=0.004) over a median follow-up of 16 months (range 5-20). Transhepatic lymphangiography and methylene blue injection with EGD evaluation of the duodenal mucosa can help diagnose PLE. Combined PTLE and EGD-RFA can be considered to treat patients with PLE.

6.
Nature ; 564(7736): 410-414, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30429611

RESUMO

Almost all eukaryote life forms have now been placed within one of five to eight supra-kingdom-level groups using molecular phylogenetics1-4. The 'phylum' Hemimastigophora is probably the most distinctive morphologically defined lineage that still awaits such a phylogenetic assignment. First observed in the nineteenth century, hemimastigotes are free-living predatory protists with two rows of flagella and a unique cell architecture5-7; to our knowledge, no molecular sequence data or cultures are currently available for this group. Here we report phylogenomic analyses based on high-coverage, cultivation-independent transcriptomics that place Hemimastigophora outside of all established eukaryote supergroups. They instead comprise an independent supra-kingdom-level lineage that most likely forms a sister clade to the 'Diaphoretickes' half of eukaryote diversity (that is, the 'stramenopiles, alveolates and Rhizaria' supergroup (Sar), Archaeplastida and Cryptista, as well as other major groups). The previous ranking of Hemimastigophora as a phylum understates the evolutionary distinctiveness of this group, which has considerable importance for investigations into the deep-level evolutionary history of eukaryotic life-ranging from understanding the origins of fundamental cell systems to placing the root of the tree. We have also established the first culture of a hemimastigote (Hemimastix kukwesjijk sp. nov.), which will facilitate future genomic and cell-biological investigations into eukaryote evolution and the last eukaryotic common ancestor.


Assuntos
Eucariotos/classificação , Eucariotos/genética , Filogenia , Técnicas de Cultura de Células/métodos , Tamanho Celular , DNA Ribossômico/genética , Eucariotos/citologia , Flagelos , Genes de RNAr/genética , Análise de Célula Única , Transcriptoma/genética
7.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35134997

RESUMO

Site-specific amino acid preferences are influenced by the genetic background of the protein. The preferences for resident amino acids are expected to, on average, increase over time because of replacements at other sites-a nonadaptive phenomenon referred to as the "evolutionary Stokes shift." Alternatively, decreases in resident amino acid propensity have recently been viewed as evidence of adaptations to external environmental changes. Using population genetics theory and thermodynamic stability constraints, we show that nonadaptive evolution can lead to both positive and negative shifts in propensities following the fixation of an amino acid, emphasizing that the detection of negative shifts is not conclusive evidence of adaptation. By examining propensity shifts from when an amino acid is first accepted at a site until it is subsequently replaced, we find that ≈50% of sites show a decrease in the propensity for the newly resident amino acid while the remaining sites show an increase. Furthermore, the distributions of the magnitudes of positive and negative shifts were comparable. Preferences were often conserved via a significant negative autocorrelation in propensity changes-increases in propensities often followed by decreases, and vice versa. Lastly, we explore the underlying mechanisms that lead propensities to fluctuate. We observe that stabilizing replacements increase the mutational tolerance at a site and in doing so decrease the propensity for the resident amino acid. In contrast, destabilizing substitutions result in more rugged fitness landscapes that tend to favor the resident amino acid. In summary, our results characterize propensity trajectories under nonadaptive stability-constrained evolution against which evidence of adaptations should be calibrated.


Assuntos
Aminoácidos , Evolução Molecular , Substituição de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Epistasia Genética , Proteínas/genética , Termodinâmica
8.
Mol Biol Evol ; 38(6): 2240-2259, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33528570

RESUMO

The transition of free-living organisms to parasitic organisms is a mysterious process that occurs in all major eukaryotic lineages. Parasites display seemingly unique features associated with their pathogenicity; however, it is important to distinguish ancestral preconditions to parasitism from truly new parasite-specific functions. Here, we sequenced the genome and transcriptome of anaerobic free-living Mastigamoeba balamuthi and performed phylogenomic analysis of four related members of the Archamoebae, including Entamoeba histolytica, an important intestinal pathogen of humans. We aimed to trace gene histories throughout the adaptation of the aerobic ancestor of Archamoebae to anaerobiosis and throughout the transition from a free-living to a parasitic lifestyle. These events were associated with massive gene losses that, in parasitic lineages, resulted in a reduction in structural features, complete losses of some metabolic pathways, and a reduction in metabolic complexity. By reconstructing the features of the common ancestor of Archamoebae, we estimated preconditions for the evolution of parasitism in this lineage. The ancestor could apparently form chitinous cysts, possessed proteolytic enzyme machinery, compartmentalized the sulfate activation pathway in mitochondrion-related organelles, and possessed the components for anaerobic energy metabolism. After the split of Entamoebidae, this lineage gained genes encoding surface membrane proteins that are involved in host-parasite interactions. In contrast, gene gains identified in the M. balamuthi lineage were predominantly associated with polysaccharide catabolic processes. A phylogenetic analysis of acquired genes suggested an essential role of lateral gene transfer in parasite evolution (Entamoeba) and in adaptation to anaerobic aquatic sediments (Mastigamoeba).


Assuntos
Archamoebae/genética , Evolução Biológica , Entamoeba histolytica/genética , Genoma de Protozoário , Parasitos/genética , Adaptação Biológica/genética , Anaerobiose/genética , Animais , Archamoebae/metabolismo , Transferência Genética Horizontal , Tamanho do Genoma , Transcriptoma
9.
Syst Biol ; 70(4): 838-843, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33528562

RESUMO

Long branch attraction (LBA) is a prevalent form of bias in phylogenetic estimation but the reasons for it are only partially understood. We argue here that it is largely due to differences in the sizes of the model spaces corresponding to different trees. Trees with long branches together allow much more flexible internal branch length parameter estimation. Consequently, although each tree has the same number of parameters, trees with long branches together have larger effective model spaces. The problem of LBA becomes particularly pronounced with partitioned data. Formulation of tree estimation as model selection leads us to propose bootstrap bias corrections as cross-checks on estimation when long branches end up being estimated together. [Bootstrap; long branch attraction; maximum likelihood; model selection; partitioned model; phylogenetics.].


Assuntos
Modelos Genéticos , Viés , Simulação por Computador , Funções Verossimilhança , Filogenia
10.
Nature ; 534(7606): 254-8, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27279223

RESUMO

Breviatea form a lineage of free living, unicellular protists, distantly related to animals and fungi. This lineage emerged almost one billion years ago, when the oceanic oxygen content was low, and extant Breviatea have evolved or retained an anaerobic lifestyle. Here we report the cultivation of Lenisia limosa, gen. et sp. nov., a newly discovered breviate colonized by relatives of animal-associated Arcobacter. Physiological experiments show that the association of L. limosa with Arcobacter is driven by the transfer of hydrogen and is mutualistic, providing benefits to both partners. With whole-genome sequencing and differential proteomics, we show that an experimentally observed fitness gain of L. limosa could be explained by the activity of a so far unknown type of NAD(P)H-accepting hydrogenase, which is expressed in the presence, but not in the absence, of Arcobacter. Differential proteomics further reveal that the presence of Lenisia stimulates expression of known 'virulence' factors by Arcobacter. These proteins typically enable colonization of animal cells during infection, but may in the present case act for mutual benefit. Finally, re-investigation of two currently available transcriptomic data sets of other Breviatea reveals the presence and activity of related hydrogen-consuming Arcobacter, indicating that mutualistic interaction between these two groups of microbes might be pervasive. Our results support the notion that molecular mechanisms involved in virulence can also support mutualism, as shown here for Arcobacter and Breviatea.


Assuntos
Arcobacter/fisiologia , Eucariotos/fisiologia , Hidrogênio/metabolismo , Simbiose , Arcobacter/genética , Eucariotos/enzimologia , Eucariotos/genética , Aptidão Genética , Hidrogenase/genética , Hidrogenase/metabolismo , NADP/metabolismo , Proteômica , Simbiose/genética , Transcriptoma , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
11.
BMC Biol ; 19(1): 167, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34446013

RESUMO

BACKGROUND: Comparing a parasitic lineage to its free-living relatives is a powerful way to understand how that evolutionary transition to parasitism occurred. Giardia intestinalis (Fornicata) is a leading cause of gastrointestinal disease world-wide and is famous for its unusual complement of cellular compartments, such as having peripheral vacuoles instead of typical endosomal compartments. Endocytosis plays an important role in Giardia's pathogenesis. Endosomal sorting complexes required for transport (ESCRT) are membrane-deforming proteins associated with the late endosome/multivesicular body (MVB). MVBs are ill-defined in G. intestinalis, and roles for identified ESCRT-related proteins are not fully understood in the context of its unique endocytic system. Furthermore, components thought to be required for full ESCRT functionality have not yet been documented in this species. RESULTS: We used genomic and transcriptomic data from several Fornicata species to clarify the evolutionary genome streamlining observed in Giardia, as well as to detect any divergent orthologs of the Fornicata ESCRT subunits. We observed differences in the ESCRT machinery complement between Giardia strains. Microscopy-based investigations of key components of ESCRT machinery such as GiVPS36 and GiVPS25 link them to peripheral vacuoles, highlighting these organelles as simplified MVB equivalents. Unexpectedly, we show ESCRT components associated with the endoplasmic reticulum and, for the first time, mitosomes. Finally, we identified the rare ESCRT component CHMP7 in several fornicate representatives, including Giardia and show that contrary to current understanding, CHMP7 evolved from a gene fusion of VPS25 and SNF7 domains, prior to the last eukaryotic common ancestor, over 1.5 billion years ago. CONCLUSIONS: Our findings show that ESCRT machinery in G. intestinalis is far more varied and complete than previously thought, associates to multiple cellular locations, and presents changes in ESCRT complement which pre-date adoption of a parasitic lifestyle.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Giardia lamblia , Evolução Biológica , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Giardia lamblia/genética , Giardia lamblia/metabolismo , Transporte Proteico
12.
Mol Biol Evol ; 37(2): 549-562, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31688943

RESUMO

The information criteria Akaike information criterion (AIC), AICc, and Bayesian information criterion (BIC) are widely used for model selection in phylogenetics, however, their theoretical justification and performance have not been carefully examined in this setting. Here, we investigate these methods under simple and complex phylogenetic models. We show that AIC can give a biased estimate of its intended target, the expected predictive log likelihood (EPLnL) or, equivalently, expected Kullback-Leibler divergence between the estimated model and the true distribution for the data. Reasons for bias include commonly occurring issues such as small edge-lengths or, in mixture models, small weights. The use of partitioned models is another issue that can cause problems with information criteria. We show that for partitioned models, a different BIC correction is required for it to be a valid approximation to a Bayes factor. The commonly used AICc correction is not clearly defined in partitioned models and can actually create a substantial bias when the number of parameters gets large as is the case with larger trees and partitioned models. Bias-corrected cross-validation corrections are shown to provide better approximations to EPLnL than AIC. We also illustrate how EPLnL, the estimation target of AIC, can sometimes favor an incorrect model and give reasons for why selection of incorrectly under-partitioned models might be desirable in partitioned model settings.


Assuntos
Biologia Computacional/métodos , Filogenia , Algoritmos , Teorema de Bayes , Funções Verossimilhança , Modelos Genéticos , Seleção Genética
13.
J Theor Biol ; 526: 110788, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34097914

RESUMO

Two recent high profile studies have attempted to use edge (branch) length ratios from large sets of phylogenetic trees to determine the relative ages of genes of different origins in the evolution of eukaryotic cells. This approach can be straightforwardly justified if substitution rates are constant over the tree for a given protein. However, such strict molecular clock assumptions are not expected to hold on the billion-year timescale. Here we propose an alternative set of conditions under which comparisons of edge length distributions from multiple sets of phylogenies of proteins with different origins can be validly used to discern the order of their origins. We also point out scenarios where these conditions are not expected to hold and caution is warranted.


Assuntos
Células Eucarióticas , Evolução Molecular , Modelos Genéticos , Filogenia
14.
BMC Biol ; 18(1): 22, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32122349

RESUMO

BACKGROUND: Comparative analyses have indicated that the mitochondrion of the last eukaryotic common ancestor likely possessed all the key core structures and functions that are widely conserved throughout the domain Eucarya. To date, such studies have largely focused on animals, fungi, and land plants (primarily multicellular eukaryotes); relatively few mitochondrial proteomes from protists (primarily unicellular eukaryotic microbes) have been examined. To gauge the full extent of mitochondrial structural and functional complexity and to identify potential evolutionary trends in mitochondrial proteomes, more comprehensive explorations of phylogenetically diverse mitochondrial proteomes are required. In this regard, a key group is the jakobids, a clade of protists belonging to the eukaryotic supergroup Discoba, distinguished by having the most gene-rich and most bacteria-like mitochondrial genomes discovered to date. RESULTS: In this study, we assembled the draft nuclear genome sequence for the jakobid Andalucia godoyi and used a comprehensive in silico approach to infer the nucleus-encoded portion of the mitochondrial proteome of this protist, identifying 864 candidate mitochondrial proteins. The A. godoyi mitochondrial proteome has a complexity that parallels that of other eukaryotes, while exhibiting an unusually large number of ancestral features that have been lost particularly in opisthokont (animal and fungal) mitochondria. Notably, we find no evidence that the A. godoyi nuclear genome has or had a gene encoding a single-subunit, T3/T7 bacteriophage-like RNA polymerase, which functions as the mitochondrial transcriptase in all eukaryotes except the jakobids. CONCLUSIONS: As genome and mitochondrial proteome data have become more widely available, a strikingly punctuate phylogenetic distribution of different mitochondrial components has been revealed, emphasizing that the pathways of mitochondrial proteome evolution are likely complex and lineage-specific. Unraveling this complexity will require comprehensive comparative analyses of mitochondrial proteomes from a phylogenetically broad range of eukaryotes, especially protists. The systematic in silico approach described here offers a valuable adjunct to direct proteomic analysis (e.g., via mass spectrometry), particularly in cases where the latter approach is constrained by sample limitation or other practical considerations.


Assuntos
Eucariotos/genética , Genoma Mitocondrial , Proteínas Mitocondriais/genética , Proteoma , Núcleo Celular/genética , Proteínas Mitocondriais/metabolismo
15.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802618

RESUMO

Determination and comparisons of complete mitochondrial genomes (mitogenomes) are important to understand the origin and evolution of mitochondria. Mitogenomes of unicellular protists are particularly informative in this regard because they are gene-rich and display high structural diversity. Ciliates are a highly diverse assemblage of protists and their mitogenomes (linear structure with high A+T content in general) were amongst the first from protists to be characterized and have provided important insights into mitogenome evolution. Here, we report novel mitogenome sequences from three representatives (Strombidium sp., Strombidium cf. sulcatum, and Halteria grandinella) in two dominant ciliate lineages. Comparative and phylogenetic analyses of newly sequenced and previously published ciliate mitogenomes were performed and revealed a number of important insights. We found that the mitogenomes of these three species are linear molecules capped with telomeric repeats that differ greatly among known species. The genomes studied here are highly syntenic, but larger in size and more gene-rich than those of other groups. They also all share an AT-rich tandem repeat region which may serve as the replication origin and modulate initiation of bidirectional transcription. More generally we identified a split version of ccmf, a cytochrome c maturation-related gene that might be a derived character uniting taxa in the subclasses Hypotrichia and Euplotia. Finally, our mitogenome comparisons and phylogenetic analyses support to reclassify Halteria grandinella from the subclass Oligotrichia to the subclass Hypotrichia. These results add to the growing literature on the unique features of ciliate mitogenomes, shedding light on the diversity and evolution of their linear molecular architecture.


Assuntos
Eucariotos/genética , Genoma Mitocondrial/genética , Sequência de Aminoácidos , Células Cultivadas , Células Eucarióticas/fisiologia , Evolução Molecular , Mitógenos/genética , Filogenia , Plâncton/genética , Origem de Replicação/genética
16.
Mol Biol Evol ; 36(10): 2292-2312, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31387118

RESUMO

The discovery that the protist Monocercomonoides exilis completely lacks mitochondria demonstrates that these organelles are not absolutely essential to eukaryotic cells. However, the degree to which the metabolism and cellular systems of this organism have adapted to the loss of mitochondria is unknown. Here, we report an extensive analysis of the M. exilis genome to address this question. Unexpectedly, we find that M. exilis genome structure and content is similar in complexity to other eukaryotes and less "reduced" than genomes of some other protists from the Metamonada group to which it belongs. Furthermore, the predicted cytoskeletal systems, the organization of endomembrane systems, and biosynthetic pathways also display canonical eukaryotic complexity. The only apparent preadaptation that permitted the loss of mitochondria was the acquisition of the SUF system for Fe-S cluster assembly and the loss of glycine cleavage system. Changes in other systems, including in amino acid metabolism and oxidative stress response, were coincident with the loss of mitochondria but are likely adaptations to the microaerophilic and endobiotic niche rather than the mitochondrial loss per se. Apart from the lack of mitochondria and peroxisomes, we show that M. exilis is a fully elaborated eukaryotic cell that is a promising model system in which eukaryotic cell biology can be investigated in the absence of mitochondria.


Assuntos
Genoma de Protozoário , Membranas Intracelulares , Oximonadídeos/genética , Citoesqueleto de Actina , Íntrons , Dinâmica Mitocondrial , Oximonadídeos/enzimologia , Oximonadídeos/ultraestrutura , Proteoma
17.
Syst Biol ; 68(6): 1003-1019, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31140564

RESUMO

Large taxa-rich genome-scale data sets are often necessary for resolving ancient phylogenetic relationships. But accurate phylogenetic inference requires that they are analyzed with realistic models that account for the heterogeneity in substitution patterns amongst the sites, genes and lineages. Two kinds of adjustments are frequently used: models that account for heterogeneity in amino acid frequencies at sites in proteins, and partitioned models that accommodate the heterogeneity in rates (branch lengths) among different proteins in different lineages (protein-wise heterotachy). Although partitioned and site-heterogeneous models are both widely used in isolation, their relative importance to the inference of correct phylogenies has not been carefully evaluated. We conducted several empirical analyses and a large set of simulations to compare the relative performances of partitioned models, site-heterogeneous models, and combined partitioned site heterogeneous models. In general, site-homogeneous models (partitioned or not) performed worse than site heterogeneous, except in simulations with extreme protein-wise heterotachy. Furthermore, simulations using empirically-derived realistic parameter settings showed a marked long-branch attraction (LBA) problem for analyses employing protein-wise partitioning even when the generating model included partitioning. This LBA problem results from a small sample bias compounded over many single protein alignments. In some cases, this problem was ameliorated by clustering similarly-evolving proteins together into larger partitions using the PartitionFinder method. Similar results were obtained under simulations with larger numbers of taxa or heterogeneity in simulating topologies over genes. For an empirical Microsporidia test data set, all but one tested site-heterogeneous models (with or without partitioning) obtain the correct Microsporidia+Fungi grouping, whereas site-homogenous models (with or without partitioning) did not. The single exception was the fully partitioned site-heterogeneous analysis that succumbed to the compounded small sample LBA bias. In general unless protein-wise heterotachy effects are extreme, it is more important to model site-heterogeneity than protein-wise heterotachy in phylogenomic analyses. Complete protein-wise partitioning should be avoided as it can lead to a serious LBA bias. In cases of extreme protein-wise heterotachy, approaches that cluster similarly-evolving proteins together and coupled with site-heterogeneous models work well for phylogenetic estimation.


Assuntos
Classificação/métodos , Modelos Teóricos , Filogenia , Simulação por Computador , Microsporídios/classificação , Microsporídios/genética
18.
PLoS Biol ; 15(9): e2003769, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28892507

RESUMO

Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%-61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize α-glucans rather than ß-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.


Assuntos
Blastocystis/genética , Genoma de Protozoário , Blastocystis/metabolismo , Metabolismo dos Carboidratos , Códon de Terminação , Microbioma Gastrointestinal , Humanos , Íntrons , Especificidade da Espécie
19.
Bioessays ; 40(5): e1700242, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29543982

RESUMO

In a recent BioEssays paper [W. F. Martin, BioEssays 2017, 39, 1700115], William Martin sharply criticizes evolutionary interpretations that involve lateral gene transfer (LGT) into eukaryotic genomes. Most published examples of LGTs in eukaryotes, he suggests, are in fact contaminants, ancestral genes that have been lost from other extant lineages, or the result of artefactual phylogenetic inferences. Martin argues that, except for transfers that occurred from endosymbiotic organelles, eukaryote LGT is insignificant. Here, in reviewing this field, we seek to correct some of the misconceptions presented therein with regard to the evidence for LGT in eukaryotes.


Assuntos
Eucariotos , Transferência Genética Horizontal , Células Eucarióticas , Evolução Molecular , Filogenia
20.
Mol Biol Evol ; 35(5): 1266-1283, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29688541

RESUMO

As a consequence of structural and functional constraints, proteins tend to have site-specific preferences for particular amino acids. Failing to adjust for heterogeneity of frequencies over sites can lead to artifacts in phylogenetic estimation. Site-heterogeneous mixture-models have been developed to address this problem. However, due to prohibitive computational times, maximum likelihood implementations utilize fixed component frequency vectors inferred from sequences in a database that are external to the alignment under analysis. Here, we propose a composite likelihood approach to estimation of component frequencies for a mixture model that directly uses the data from the alignment of interest. In the common case that the number of taxa under study is not large, several adjustments to the default composite likelihood are shown to be necessary. In simulations, the approach is shown to provide large improvements over hierarchical clustering. For empirical data, substantial improvements in likelihoods are found over mixtures using fixed components.


Assuntos
Substituição de Aminoácidos , Modelos Genéticos , Simulação por Computador , Funções Verossimilhança , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA