RESUMO
Casein kinase 1 epsilon (CK1ε), a member of the serine/threonine protein kinase family, phosphorylates a broad range of substrates. However, its role in the development of chronic liver diseases remains elusive. This study aimed to investigate the role of CK1ε in the development and progression of metabolic dysfunction-associated steatohepatitis (MASH). Hepatocyte-specific CK1ε knockout (CK1εΔHEP) mice were generated by crossbreeding mice with floxed CK1ε alleles (CK1εfl/fl) and Cre-expressing albumin mice. Mice were fed either a Western diet (WD) or a methionine- and choline-deficient diet to induce MASH. CK1εΔHEP was associated with a decreased severity of WD- or methionine- and choline-deficient diet-induced MASH, as confirmed by reduced incidence of hepatic lesions and significantly lower levels of alanine aminotransferase, aspartate aminotransferase, and proinflammatory cytokine tumor necrosis factor (TNF)-α. CK1εΔHEP WD-fed mice exhibited significant amelioration of total cholesterol, triglycerides, and de novo lipogenic genes, indicating that CK1ε could influence lipid metabolism. CK1εΔHEP WD-fed mice showed significantly down-regulated TNF receptor-associated factor (TRAF) 3, phosphorylated (p) transforming growth factor-ß-activated kinase 1, p-TRAF-associated NF-κB activator (TANK)-binding kinase 1 (TBK1), and p-AKT levels, thereby affecting downstream mitogen-activated protein kinase signaling, indicating a potential mechanism for the observed rescue. Finally, pharmacologic inhibition of CK1ε with PF670462 improved palmitic acid-induced steatohepatitis in vitro and attenuated WD-induced metabolic profile in vivo. In conclusion, CK1ε up-regulates TNF receptor-associated factor 3, which, in turn, causes transforming growth factor-ß-activated kinase 1-dependent signaling, amplifies downstream mitogen-activated protein kinase signaling, modifies p-c-Jun levels, and exacerbates inflammation, all of which are factors in WD-induced metabolic dysfunction-associated steatotic liver disease.
Assuntos
Caseína Quinase 1 épsilon , Hepatócitos , Camundongos Knockout , Fator 3 Associado a Receptor de TNF , Regulação para Cima , Animais , Camundongos , Hepatócitos/metabolismo , Hepatócitos/patologia , Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase 1 épsilon/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/genética , Masculino , Fígado/metabolismo , Fígado/patologiaRESUMO
The simultaneous abuse of alcohol-cocaine is known to cause stronger and more unpredictable cellular damage in the liver, heart, and brain. However, the mechanistic crosstalk between cocaine and alcohol in liver injury remains unclear. The findings revealed cocaine-induced liver injury and inflammation in both marmosets and mice. Of note, co-administration of cocaine and ethanol in mice causes more severe liver damage than individual treatment. The metabolomic analysis confirmed that hippuric acid (HA) is the most abundant metabolite in marmoset serum after cocaine consumption and that is formed in primary marmoset hepatocytes. HA, a metabolite of cocaine, increases mitochondrial DNA leakage and subsequently increases the production of proinflammatory factors via STING signaling in Kupffer cells (KCs). In addition, conditioned media of cocaine-treated KC induced hepatocellular necrosis via alcohol-induced TNFR1. Finally, disruption of STING signaling in vivo ameliorated co-administration of alcohol- and cocaine-induced liver damage and inflammation. These findings postulate intervention of HA-STING-TNFR1 axis as a novel strategy for treatment of alcohol- and cocaine-induced excessive liver damage.
Assuntos
Cocaína , DNA Mitocondrial , Hipuratos , Hepatopatias Alcoólicas , Proteínas de Membrana , Transdução de Sinais , Animais , Cocaína/farmacologia , Cocaína/toxicidade , Transdução de Sinais/efeitos dos fármacos , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , DNA Mitocondrial/metabolismo , DNA Mitocondrial/efeitos dos fármacos , Camundongos , Hipuratos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Etanol/toxicidade , Camundongos Endogâmicos C57BL , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismoRESUMO
Effective therapies for alcohol-associated liver disease (ALD) are limited; therefore, the discovery of new therapeutic agents is greatly warranted. Toll-like receptor 7 (TLR7) is a pattern recognition receptor for single-stranded RNA, and its activation prevents liver fibrosis. We examined liver and intestinal damage in Tlr7-/- mice to determine the role of TLR7 in ALD pathogenesis. In an alcoholic hepatitis (AH) mouse model, hepatic steatosis, injury, and inflammation were induced by chronic binge ethanol feeding in mice, and Tlr7 deficiency exacerbated these effects. Because these results demonstrated that endogenous TLR7 signaling activation is protective in the AH mouse model, we hypothesized that TLR7 activation may be an effective therapeutic strategy for ALD. Therefore, we investigated the therapeutic effect of TLR7 agonistic agent, 1Z1, in the AH mouse model. Oral administration of 1Z1 was well tolerated and prevented intestinal barrier disruption and bacterial translocation, which thus suppressed ethanol-induced hepatic injury, steatosis, and inflammation. Furthermore, 1Z1 treatment up-regulated the expression of antimicrobial peptides, Reg3b and Reg3g, in the intestinal epithelium, which modulated the microbiome by decreasing and increasing the amount of Bacteroides and Lactobacillus, respectively. Additionally, 1Z1 up-regulated intestinal interleukin (IL)-22 expression. IL-22 deficiency abolished the protective effects of 1Z1 in ethanol-induced liver and intestinal damage, suggesting intestinal IL-22 as a crucial mediator for 1Z1-mediated protection in the AH mouse model. Collectively, our results indicate that TLR7 signaling exerts protective effects in the AH mouse model and that a TLR7 ligand, 1Z1, holds therapeutic potential for the treatment of AH.
Assuntos
Etanol/toxicidade , Interleucinas/metabolismo , Mucosa Intestinal/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Glicoproteínas de Membrana/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 7 Toll-Like/metabolismo , Administração Oral , Animais , Bacteroides/efeitos dos fármacos , Modelos Animais de Doenças , Fígado Gorduroso/complicações , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/complicações , Inflamação/genética , Inflamação/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Lactobacillus/efeitos dos fármacos , Ligantes , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/fisiopatologia , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs , Proteínas Associadas a Pancreatite/genética , Proteínas Associadas a Pancreatite/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Transdução de Sinais/genética , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/patologia , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/genética , Interleucina 22RESUMO
We investigated the pharmacokinetic pathway of berberine and its metabolites in vitro, in Caco-2 cells, and in human participants following the administration of dihydroberberine (DHB) and micellar berberine (LipoMicel®, LMB) formulations. A pilot trial involving nine healthy volunteers was conducted over a 24 h period; blood samples were collected and subjected to Ultra High-Performance Liquid Chromatography-High Resolution Mass Spectrometry (UHPLC-HRMS) analyses to quantify the concentrations of berberine and its metabolites. Pharmacokinetic correlations indicated that berberrubine and thalifendine follow distinct metabolic pathways. Additionally, jatrorrhizine sulfate appeared to undergo metabolism differently compared to the other sulfated metabolites. Moreover, berberrubine glucuronide likely has a unique metabolic pathway distinct from other glucuronides. The human trial revealed significantly higher blood concentrations of berberine metabolites in participants of the DHB treatment group compared to the LMB treatment group-except for berberrubine glucuronide, which was only detected in the LMB treatment group. Similarly, results from in vitro investigations showed significant differences in berberine metabolite profiles between DHB and LMB. Dihydroberberine, dihydroxy-berberrubine/thalifendine and jatrorrhizine sulfate were detected in LMB-treated cells, but not in DHB-treated cells; thalifendine and jatrorrhizine-glucuronide were detected in DHB-treated cells only. While DHB treatment provided higher blood concentrations of berberine and most berberine metabolites, both in vitro (Caco-2 cells) and in vivo human studies showed that treatment with LMB resulted in a higher proportion of unmetabolized berberine compared to DHB. These findings suggest potential clinical implications that merit further investigation in future large-scale trials.
Assuntos
Berberina , Micelas , Humanos , Berberina/análogos & derivados , Berberina/farmacocinética , Berberina/sangue , Berberina/metabolismo , Células CACO-2 , Projetos Piloto , Masculino , Adulto , Feminino , Cromatografia Líquida de Alta PressãoRESUMO
Psoriasis, a chronic inflammation-mediated skin disease, affects 2-3% of the global population. It is characterized by keratinocyte hyperproliferation and immune cell infiltration. The JAK/STAT3 and JAK/STAT1 signaling pathways play an important role in the development of psoriasis when triggered by IL-6 and IFN-γ, which are produced by dendritic cells and T-lymphocytes. Thus, blocking JAK/STAT signaling may be a potential strategy for treating psoriasis. Therefore, we examined the effects of CMX, an extract of Centipeda minima enriched in Brevilin A, Arnicolide D, Arnicolide C, and Microhelenin C, on macrophages and keratinocytes. We established an in vitro model of psoriasis, based on an inflammation-associated keratinocyte proliferation model, and used macrophages and keratinocytes treated with LPS, IL-6, or IFN-γ to evaluate the effect of CMX. We found that CMX reduced pro-inflammatory cytokine production, by inhibiting lipopolysaccharide (LPS)-induced JAK1/2 and STAT1/3 phosphorylation in macrophages. Moreover, CMX-downregulated chemokine expression and cell proliferation compared with components in HaCaT cells, induced by rh-IL-6 and rh-IFN-γ, respectively. Consistently, we demonstrated that the reduction in chemokine expression and hyperproliferation was mediated by the regulation of IFN-γ-activated JAK/STAT1 and IL-6-activated JAK/STAT3 signaling. In conclusion, CMX inhibited JAK/STAT-mediated inflammatory responses and cell proliferation in macrophages and keratinocytes. Consequently, CMX may have potential uses as a therapeutic agent for treating psoriasis.
Assuntos
Interleucina-6 , Psoríase , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Queratinócitos , Inflamação/tratamento farmacológico , Psoríase/tratamento farmacológico , Proliferação de Células , Quimiocinas/metabolismo , Macrófagos/metabolismo , Fator de Transcrição STAT1/metabolismoRESUMO
Zaluzanin C (ZC), a sesquiterpene lactone isolated from Laurus nobilis L., has been reported to have anti-inflammatory and antioxidant effects. However, the mechanistic role of ZC in its protective effects in Kupffer cells and hepatocytes has not been elucidated. The purpose of this study was to elucidate the efficacy and mechanism of action of ZC in Kupffer cells and hepatocytes. ZC inhibited LPS-induced mitochondrial ROS (mtROS) production and subsequent mtROS-mediated NF-κB activity in Kupffer cells (KCs). ZC reduced mRNA levels of pro-inflammatory cytokines (Il1b and Tnfa) and chemokines (Ccl2, Ccl3, Ccl4, Cxcl2 and Cxcl9). Tumor necrosis factor (TNF)-α-induced hepatocyte mtROS production was inhibited by ZC. ZC was effective in alleviating mtROS-mediated mitochondrial dysfunction. ZC enhanced mitophagy and increased mRNA levels of fatty acid oxidation genes (Pparα, Cpt1, Acadm and Hadha) and mitochondrial biosynthetic factors (Pgc1α, Tfam, Nrf1 and Nrf2) in hepatocytes. ZC has proven its anti-lipid effect by improving lipid accumulation in hepatocytes by enhancing mitochondrial function to facilitate lipid metabolism. Therefore, our study suggests that ZC may be an effective compound for hepatoprotection by suppressing inflammation and lipid accumulation through regulating mtROS.
Assuntos
Hepatócitos , Células de Kupffer , Humanos , Células de Kupffer/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mitocôndrias/metabolismo , RNA Mensageiro/metabolismo , Lipídeos/farmacologia , Fígado , Metabolismo dos LipídeosRESUMO
Despite the increasing clinical importance of nonalcoholic fatty liver disease (NAFLD), little is known about its underlying pathogenesis or specific treatment. The senescence marker protein 30 (SMP30), which regulates the biosynthesis of vitamin C (VC) in many mammals, except primates and humans, was recently recognized as a gluconolactonase. However, the precise relation between VC and lipid metabolism in NAFLD is not completely understood. Therefore, this study aimed to clearly reveal the role of VC in NAFLD progression. SMP30 knockout (KO) mice were used as a VC-deficient mouse model. To investigate the precise role of VC on lipid metabolism, 13- to 15-week-old SMP30 KO mice and wild-type mice fed a 60% high-fat diet were exposed to tap water or VC-containing water (1.5 g/L) ad libitum for 11 weeks. Primary mouse hepatocytes isolated from the SMP30 KO and wild-type mice were used to demonstrate the relation between VC and lipid metabolism in hepatocytes. Long-term VC deficiency significantly suppressed the progression of simple steatosis. The high-fat diet-fed VC-deficient SMP30 KO mice exhibited impaired sterol regulatory element-binding protein-1c activation because of excessive cholesterol accumulation in hepatocytes. Long-term VC deficiency inhibits de novo lipogenesis through impaired sterol regulatory element-binding protein-1c activation.
Assuntos
Deficiência de Ácido Ascórbico/metabolismo , Hepatócitos/metabolismo , Lipogênese/fisiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Progressão da Doença , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos KnockoutRESUMO
Mitochondria play a central role in the pathophysiology of inflammatory bowel disease (IBD) and colorectal cancer (CRC). The maintenance of mitochondrial function is necessary for a stable immune system. Mitochondrial dysfunction in the gastrointestinal system leads to the excessive activation of multiple inflammatory signaling pathways, leading to IBD and increased severity of CRC. In this review, we focus on the mitochondria and inflammatory signaling pathways and its related gastrointestinal diseases.
Assuntos
Neoplasias Colorretais , Doenças Inflamatórias Intestinais , Humanos , Mitocôndrias/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Transdução de Sinais , Neoplasias Colorretais/metabolismoRESUMO
Excessive alcohol consumption induces intestinal dysbiosis of the gut microbiome and reduces gut epithelial integrity. This often leads to portal circulation-mediated translocation of gut-derived microbial products, such as lipopolysaccharide (LPS), to the liver, where these products engage Toll-like receptor 4 (TLR4) and initiate hepatic inflammation, which promotes alcoholic liver disease (ALD). Although the key self-destructive process of autophagy has been well-studied in hepatocytes, its role in macrophages during ALD pathogenesis remains elusive. Using WT and myeloid cell-specific autophagy-related 7 (Atg7) knockout (Atg7ΔMye) mice, we found that chronic ethanol feeding for 6 weeks plus LPS injection enhances serum alanine aminotransferase and IL-1ß levels and augments hepatic C-C motif chemokine ligand 5 (CCL5) and C-X-C motif chemokine ligand 10 (CXCL10) expression in WT mice, a phenotype that was further exacerbated in Atg7ΔMye mice. Atg7ΔMye macrophages exhibited defective mitochondrial respiration and displayed elevated mitochondrial reactive oxygen species production and inflammasome activation relative to WT cells. Interestingly, compared with WT cells, Atg7ΔMye macrophages also had a drastically increased abundance and nuclear translocation of interferon regulatory factor 1 (IRF1) after LPS stimulation. Mechanistically, LPS induced co-localization of IRF1 with the autophagy adaptor p62 and the autophagosome, resulting in subsequent IRF1 degradation. However, upon p62 silencing or Atg7 deletion, IRF1 started to accumulate in autophagy-deficient macrophages and translocated into the nucleus, where it induced CCL5 and CXCL10 expression. In conclusion, macrophage autophagy protects against ALD by promoting IRF1 degradation and removal of damaged mitochondria, limiting macrophage activation and inflammation.
Assuntos
Morte Celular Autofágica , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Etanol/efeitos adversos , Fator Regulador 1 de Interferon/metabolismo , Macrófagos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteólise , Animais , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Etanol/farmacologia , Fator Regulador 1 de Interferon/genética , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , Fígado/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/patologiaRESUMO
Aucklandia lappa Decne., known as "Mok-hyang" in Korea, has been used for the alleviation of abdominal pain, vomiting, diarrhea, and stress gastric ulcers in traditional oriental medicine. We investigated the anti-inflammatory and antioxidative effects of the ethanol extract of Aucklandia lappa Decne. (ALDE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. ALDE significantly inhibited the LPS-induced nitric oxide (NO) production and reduced inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. The production of other proinflammatory mediators, including COX-2, interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α, was reduced by ALDE in LPS-stimulated RAW 264.7 cells. The mechanism underlying the anti-inflammatory effects of ALDE was elucidated to be the suppression of LPS-induced nuclear translocation of p65, followed by the degradation of IκB and the inhibition of the phosphorylation of mitogen-activated protein kinases (MAPK). In addition, ALDE showed enhanced radical scavenging activity. The antioxidant effect of ALDE was caused by the enhanced expression of heme oxygenase (HO-1) via stabilization of the expression of the nuclear transcription factor E2-related factor 2 (Nrf2) pathway. Collectively, these results indicated that ALDE not only exerts anti-inflammatory effects via the suppression of the NF-κB and MAPK pathways but also has an antioxidative effect through the activation of the Nrf2/HO-1 pathway.
Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Saussurea/química , Animais , Antioxidantes/metabolismo , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Heme Oxigenase-1/metabolismo , Proteínas I-kappa B/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacosRESUMO
Excessive alcohol consumption leads to chronic liver diseases. Macrophage-inducible C-type lectin (Mincle) is a C-type lectin receptor that recognizes spliceosome-associated protein 130 (SAP130) known as an endogenous ligand released from dying cells. The aim was to examine the role of Mincle-SAP130 in the pathogenesis of alcoholic liver disease. Alcohol-induced liver injury was induced in wild-type (WT) and Mincle knockout (KO) mice by using a chronic-binge ethanol-feeding model. Mincle KO mice showed significant lower hepatic steatosis, inflammation with neutrophil infiltration, and fibrosis compared with WT mice after alcohol feeding. In contrast, Mincle activation exacerbated alcohol-induced liver injury. Kupffer cells (KCs) are major sources of Mincle. IL-1ß expression was significantly down-regulated in Mincle KO mice compared with that in WT mice after alcohol consumption. Interestingly, expression and production of IL-1ß were significantly decreased in SAP130-treated KCs isolated from leucine-rich-containing family pyrin domain containing-3-deficient mice compared with those in WT KCs. Such results were also observed in cells treated with SAP130 plus Syk inhibitor. Furthermore, infiltration of invariant natural killer T cells was decreased in livers of Mincle KO mice. Finally, inhibition of Syk signaling ameliorated alcohol-induced liver injury. Collectively, these results demonstrated that interaction between Mincle and SAP130 may promote the progression of alcoholic liver disease by IL-1ß production in KCs and consequently increase inflammatory immune cell infiltration.
Assuntos
Progressão da Doença , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Fígado/lesões , Fígado/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas/metabolismo , Animais , Etanol , Lectinas Tipo C/deficiência , Lectinas Tipo C/metabolismo , Fígado/patologia , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/metabolismo , Infiltração de Neutrófilos , Transdução de Sinais , Quinase Syk/metabolismoRESUMO
Toll-like receptor 7 (TLR7) signaling regulates the production of type 1 interferons (IFNs) and proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, implicated in the control of regulatory T (Treg) cell activity. However, the mechanistic interplay between TLR7 signaling and Treg cells in nonalcoholic steatohepatitis (NASH) has not been elucidated. Our aim was to clarify the role of TLR7 signaling in the pathogenesis of NASH. Steatohepatitis was induced in wild-type (WT), TLR7-deficient, IFN-α/ß receptor 1-deficient, and Treg cell-depleted mice. TLR7-deficient and IFN-α/ß receptor 1-deficient mice were more protective to steatohepatitis than WT mice. Of interest, both TNF-α and type 1 IFN promoted apoptosis of Treg cells involved in the prevention of NASH. Indeed, Treg cell-depleted mice had aggravated steatohepatitis compared with WT mice. Finally, treatment with immunoregulatory sequence 661, an antagonist of TLR7, efficiently ameliorated NASH in vivo. These results demonstrate that TLR7 signaling can induce TNF-α production in Kupffer cells and type I IFN production in dendritic cells. These cytokines subsequently induce hepatocyte death and inhibit Treg cells activities, leading to the progression of NASH. Thus, manipulating the TLR7-Treg cell axis might be used as a novel therapeutic strategy to treat NASH.
Assuntos
Células Dendríticas/imunologia , Células de Kupffer/imunologia , Glicoproteínas de Membrana/fisiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Linfócitos T Reguladores/imunologia , Receptor 7 Toll-Like/fisiologia , Animais , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Hepatócitos/imunologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Interferon Tipo I/metabolismo , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Hepatocyte death is associated with liver inflammation, fibrosis and hepatocellular carcinoma (HCC). Damaged cells trigger inflammation through activation of Toll-like receptors (TLRs). Although the role of TLR4 in HCC development has been reported, the role of TLR9 in the development of HCC remains elusive. To investigate the role of TLR4 and TLR9 signaling in liver inflammation-fibrosis-cancer axis, we took advantage of mice with hepatic deletion of transforming growth factor-ß-activated kinase 1 (Tak1ΔHep) that develop spontaneous liver injury, inflammation, fibrosis, and HCC, recapitulating the pathology of human HCC. We generated double knockout mice lacking genes of our interest with hepatic Tak1. Tak1ΔHep mice and Tlr4-deficient Tak1ΔHep mice had similar serum ALT levels, but Tlr4-deficient Tak1ΔHep mice exhibited significantly reduced macrophage infiltration, myofibroblast activation and tumor formation. Ablation of TLR9 reduced spontaneous liver injury, inflammation, fibrosis, and cancer development in Tak1ΔHep mice. In addition, the common adaptor, myeloid differentiation factor 88 (MyD88)-deficient Tak1ΔHep mice also attenuated liver injury, macrophage recruitment, collagen deposition, and tumor growth compared with control Tak1ΔHep mice. Genetic ablation of TNF receptor type I (TNFR) in Tak1ΔHep mice remarkably reduced liver inflammation-fibrosis-cancer axis. Surprisingly, disruption of interleukin-1 receptor (IL-1R) had no effect on liver injury and tumor formation, although Il1r-deficient Tak1ΔHep showed attenuated macrophage infiltration and collagen deposition. In conclusion, TLR4- and TLR9-MyD88 are driving forces of progression to HCC accompanied by liver inflammation and fibrosis in Tak1ΔHep mice. Importantly, TLR4 and TLR9 downstream TNFR, but not IL-1R signaling is crucial for the development of HCC in Tak1ΔHep mice.
Assuntos
Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Hepatócitos/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , MAP Quinase Quinase Quinases/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologiaRESUMO
Chemokines are chemo-attractants for leukocyte trafficking, growth, and activation in injured and inflammatory tissues. The chemokine system is comprised of 50 chemokine ligands and 20 cognate chemokine receptors. In the context of liver diseases, leukocytes, hepatocytes, hepatic stellate cells, endothelial cells, and vascular smooth muscle cells are capable of producing chemokines. Chemokine receptors are typically expressed in various leukocyte subsets. Given that inflammation is a critical factor for the transition from simple steatosis to non-alcoholic steatohepatitis (NASH), and fibrosis, the chemokine system may play a prominent role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Indeed, accumulating evidence shows elevated expression of chemokines and their receptors in the livers of obese patients with advanced steatosis and NASH. This chapter will discuss the underlying molecular mechanisms and the therapeutic potential of the chemokine systems in the pathogenesis of NAFLD. Among chemokines, we will highlight CCL2, CCL5, CXCL8-10, CX3CL1, and CXCL16 as pivotal mediators in the development of steatosis, NASH, and fibrosis.
Assuntos
Quimiocinas/metabolismo , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Receptores de Quimiocinas/metabolismo , Animais , Humanos , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/patologiaRESUMO
Type 2 diabetes is characterized by insulin resistance, which leads to increased blood glucose levels. Adipocytes are involved in the development of insulin resistance, resulting from the dysfunction of the insulin signaling pathway. In this study, we investigated whether meso-dihydroguaiaretic acid (MDGA) may modulate glucose uptake in adipocytes, and examined its mechanism of action. MDGA enhanced adipogenesis through up-regulation of peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α in 3T3-L1 adipocytes partially differentiated with sub-optimal concentrations of insulin. MDGA also increased glucose uptake by stimulating expression and translocation of glucose transporter 4 (GLUT4) in adipocytes. These results suggest that MDGA may increase GLUT4 expression and its translocation by promoting insulin sensitivity, leading to enhanced glucose uptake.
Assuntos
Adipócitos/citologia , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Guaiacol/análogos & derivados , Lignanas/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia , Animais , Guaiacol/farmacologia , Camundongos , PPAR gama/metabolismo , Regulação para CimaRESUMO
Although previous studies reported the involvement of the TLR4-TRIF pathway in alcohol-induced liver injury, the role of TLR2 and TLR9 signaling in alcohol-mediated neutrophil infiltration and liver injury has not been elucidated. Since alcohol binge drinking is recognized to induce more severe form of alcohol liver disease, we used a chronic-binge ethanol-feeding model as a mouse model for early stage of alcoholic hepatitis. Whereas a chronic-binge ethanol feeding induced alcohol-mediated liver injury in wild-type mice, TLR2- and TLR9-deficient mice showed reduced liver injury. Induction of neutrophil-recruiting chemokines, including Cxcl1, Cxcl2, and Cxcl5, and hepatic neutrophil infiltration were increased in wild-type mice, but not in TLR2- and TLR9-deficient mice. In vivo depletion of Kupffer cells (KCs) by liposomal clodronate reduced liver injury and the expression of Il1b, but not Cxcl1, Cxcl2, and Cxcl5, suggesting that KCs are partly associated with liver injury, but not neutrophil recruitment, in a chronic-binge ethanol-feeding model. Notably, hepatocytes and hepatic stellate cells (HSCs) produce high amounts of CXCL1 in ethanol-treated mice. The treatment with TLR2 and TLR9 ligands synergistically upregulated CXCL1 expression in hepatocytes. Moreover, the inhibitors for CXCR2, a receptor for CXCL1, and MyD88 suppressed neutrophil infiltration and liver injury induced by chronic-binge ethanol treatment. Consistent with the above findings, hepatic CXCL1 expression was highly upregulated in patients with alcoholic hepatitis. In a chronic-binge ethanol-feeding model, the TLR2 and TLR9-dependent MyD88-dependent pathway mediates CXCL1 production in hepatocytes and HSCs; the CXCL1 then promotes neutrophil infiltration into the liver via CXCR2, resulting in the development of alcohol-mediated liver injury.
Assuntos
Quimiocina CXCL1/metabolismo , Hepatopatias Alcoólicas/metabolismo , Fígado/imunologia , Infiltração de Neutrófilos , Receptor 2 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Consumo Excessivo de Bebidas Alcoólicas , Células Cultivadas , Quimiocina CXCL1/imunologia , Modelos Animais de Doenças , Etanol , Feminino , Células Estreladas do Fígado/imunologia , Células Estreladas do Fígado/metabolismo , Hepatócitos/imunologia , Hepatócitos/metabolismo , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Fígado/metabolismo , Fígado/patologia , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/imunologia , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores de Interleucina-8B/imunologia , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais , Fatores de Tempo , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Regulação para CimaRESUMO
UNLABELLED: Toll-like receptor 7 (TLR7) signaling predominantly regulates production of type I interferons (IFNs), which has been suggested in clinical studies to be antifibrotic. However, the mechanistic role of the TLR7-type I IFN axis in liver fibrosis has not been elucidated. In the present study, liver fibrosis was induced in wild-type (WT), TLR7-deficient, and IFN-α/ß receptor-1 (IFNAR1)-deficient mice and TLR7-mediated signaling was assessed in liver cells isolated from these mice. TLR7-deficient and IFNAR1-deficient mice were more susceptible to liver fibrosis than WT mice, indicating that TLR7-type I IFN signaling exerts a protective effect against liver fibrosis. Notably, the hepatic expression of interleukin-1 receptor antagonist (IL-1ra) was suppressed in TLR7- or IFNAR1-deficient mice compared with respective WT mice, and treatment with recombinant IL-1ra reduced liver fibrosis. In vivo activation of TLR7 significantly increased IFNa4 and IL-1ra expression in the liver. Interestingly, each cytokine had a different cellular source, showing that dendritic cells (DCs) are the responsible cell type for production of type I IFN, while Kupffer cells (KCs) mainly produce IL-1ra in response to type I IFN. Furthermore, TLR7 activation by R848 injection suppressed liver fibrosis and production of proinflammatory cytokines, and these effects were dependent on type I IFN signaling. Consistent with in vivo data, IFN-α significantly induced IL-1ra production in primary KCs. CONCLUSION: TLR7 signaling activates DCs to produce type I IFN, which in turn induces antifibrogenic IL-1ra production in KCs. Thus, manipulation of the TLR7-type I IFN-IL-1ra axis may be a new therapeutic strategy for the treatment of liver fibrosis.
Assuntos
Colestase/prevenção & controle , Interferon Tipo I/metabolismo , Cirrose Hepática/prevenção & controle , Glicoproteínas de Membrana/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais/imunologia , Receptor 7 Toll-Like/metabolismo , Animais , Tetracloreto de Carbono/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Colestase/imunologia , Colestase/metabolismo , Doença Crônica , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Cirrose Hepática/imunologia , Cirrose Hepática/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologiaRESUMO
UNLABELLED: Transforming growth factor beta (TGF-ß) signaling activates Smad- and TGF-ß-activated kinase 1 (TAK1)-dependent signaling to regulate cell survival, proliferation, fibrosis, and tumorigenesis. The effects of TGF-ß signaling on metabolic syndrome, including nonalcoholic fatty liver disease, remain elusive. Wild-type (WT) and hepatocyte-specific TGF-ß receptor type II-deficient (Tgfbr2ΔHEP) mice were fed a choline-deficient amino acid (CDAA)-defined diet for 22 weeks to induce NASH. WT mice fed a CDAA diet displayed increased activation of Smad2/3 and had marked lipid accumulation, inflammatory cell infiltration, hepatocyte death, and fibrosis; in comparison, Tgfbr2ΔHEP mice fed a CDAA diet had suppressed liver steatosis, inflammation, and fibrosis. Both palmitate-induced steatotic hepatocytes and hepatocytes isolated from WT mice fed a CDAA diet had increased susceptibility to TGF-ß-mediated death. TGF-ß-mediated death in steatotic hepatocytes was inhibited by silencing Smad2 or blocking reactive oxygen species (ROS) production and was enhanced by inhibiting TAK1 or nuclear factor kappa B. Increased hepatic steatosis in WT mice fed a CDAA diet was associated with the increased expression of lipogenesis genes (Dgat1 and Srebp1c), whereas the decreased steatosis in Tgfbr2ΔHEP mice was accompanied by the increased expression of genes involved in ß-oxidation (Cpt1 and Acox1). In combination with palmitate treatment, TGF-ß signaling promoted lipid accumulation with induction of lipogenesis-related genes and suppression of ß-oxidation-related genes in hepatocytes. Silencing Smad2 decreased TGF-ß-mediated lipid accumulation and corrected altered gene expression related to lipid metabolism in hepatocytes. Finally, we confirmed that livers from patients with nonalcoholic steatohepatitis (NASH) displayed phosphorylation and nuclear translocation of Smad2/3. CONCLUSIONS: TGF-ß signaling in hepatocytes contributes to hepatocyte death and lipid accumulation through Smad signaling and ROS production that promote the development of NASH.
Assuntos
Apoptose/fisiologia , Fígado Gorduroso/fisiopatologia , Hepatócitos/fisiologia , Metabolismo dos Lipídeos/fisiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Células Cultivadas , Deficiência de Colina/metabolismo , Deficiência de Colina/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Deleção de Genes , Hepatócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/deficiência , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Proteínas Smad/fisiologiaRESUMO
BACKGROUND: Accumulating evidence suggests that Foxp3+ regulatory T (Treg) cells act as inhibitory mediators of inflammation; however, the in vivo mechanism underlying this protection remains elusive in liver diseases. AIMS: To clarify the in vivo role of Foxp3+ Treg cells in liver fibrosis, we used the DEREG mouse, which expresses the diphtheria toxin receptor under control of the Foxp3 promoter, allowing for specific deletion of Foxp3+ Treg cells. METHODS: Bile duct ligation-induced liver injury and fibrosis were assessed by histopathology, fibrogenic gene expression, and measurement of cytokine and chemokine levels. RESULTS: Depletion of Foxp3+ Treg cells enhanced Th17 cell response as demonstrated by the increase of IL-17+ cells and related gene expressions including Il17f, Il17ra, and Rorgt in the fibrotic livers of DEREG mice. Of note, infiltration of CD8+ T cells and Cd8 gene expression was significantly increased in the livers of DEREG mice. Consistent with increased IL-17+ and CD8+ T cell responses, DEREG mice generated higher levels of inflammatory cytokines (TNF-α, IL-6, and IL-12p70) and chemokines (MCP-1, MIP-1α, and RANTES). These results were concordant with severity of liver fibrosis and hepatic enzyme levels (ALT and ALP). CONCLUSIONS: The present findings demonstrate that Foxp3+ Treg cells inhibit the profibrogenic inflammatory milieu through suppression of pro-fibrogenic CD8+ and IL-17+ T cells.
Assuntos
Colestase/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Cirrose Hepática/patologia , Linfócitos T Reguladores/fisiologia , Animais , Ductos Biliares/cirurgia , Linfócitos T CD8-Positivos , Fatores de Transcrição Forkhead/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Ligadura , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Células Th17RESUMO
BACKGROUND & AIMS: Transforming growth factor (TGF)-ß-activated kinase 1 (TAK1) is activated in different cytokine signaling pathways. Deletion of Tak1 from hepatocytes results in spontaneous development of hepatocellular carcinoma (HCC), liver inflammation, and fibrosis. TGF-ß activates TAK1 and Smad signaling, which regulate cell death, proliferation, and carcinogenesis. However, it is not clear whether TGF-ß signaling in hepatocytes, via TGF-ß receptor-2 (Tgfbr2), promotes HCC and liver fibrosis. METHODS: We generated mice with hepatocyte-specific deletion of Tak1 (Tak1ΔHep), as well as Tak1/Tgfbr2DHep and Tak1/Smad4ΔHep mice. Tak1flox/flox, Tgfbr2ΔHep, and Smad4ΔHep mice were used as controls, respectively. We assessed development of liver injury, inflammation, fibrosis, and HCC. Primary hepatocytes isolated from these mice were used to assess TGF-ß-mediated signaling. RESULTS: Levels of TGF-ß, TGF-ßR2, and phospho-Smad2/3 were increased in HCCs from Tak1ΔHep mice, which developed liver fibrosis and inflammation by 1 month and HCC by 9 months. However, Tak1/Tgfbr2ΔHep mice did not have this phenotype, and their hepatocytes did not undergo spontaneous cell death or compensatory proliferation. Hepatocytes from Tak1ΔHep mice incubated with TGF-ß did not activate p38, c-Jun N-terminal kinase, or nuclear factor-κB; conversely, TGF-ß-mediated cell death and phosphorylation of Smad2/3 were increased, compared with control hepatocytes. Blocking the Smad pathway inhibited TGF-ß-mediated death of Tak1-/- hepatocytes. Accordingly, disruption of Smad4 reduced the spontaneous liver injury, inflammation, fibrosis, and HCC that develops in Tak1ΔHep mice. Levels of the anti-apoptotic protein Bcl-xL, ß-catenin, connective tissue growth factor, and vascular endothelial growth factor were increased in HCC from Tak1ΔHep mice, but not in HCCs from Tak1/Tgfbr2ΔHep mice. Injection of N-nitrosodiethylamine induced HCC formation in wild-type mice, but less in Tgfbr2ΔHep mice. CONCLUSIONS: TGF-ß promotes development of HCC in Tak1ΔHep mice by inducing hepatocyte apoptosis and compensatory proliferation during early phases of tumorigenesis, and inducing expression of anti-apoptotic, pro-oncogenic, and angiogenic factors during tumor progression.