Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 326(4): H916-H922, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334968

RESUMO

Prior animal and cell studies have demonstrated a direct role of high-density lipoprotein (HDL) and apolipoprotein A-I (ApoA-I) in enhancing skeletal muscle mitochondrial function and exercise capacity. However, the relevance of these animal and cell investigations in humans remains unknown. Therefore, a cross-sectional study was conducted in 48 adults (67% female, 8% Black participants, age 39 ± 15.4 yr old) to characterize the associations between HDL measures, ApoA-I, and muscle mitochondrial function. Forearm muscle oxygen recovery time (tau) from postexercise recovery kinetics was used to assess skeletal muscle mitochondrial function. Lipoprotein measures were assessed by nuclear magnetic resonance. HDL efflux capacity was assessed using J774 macrophages, radiolabeled cholesterol, and apolipoprotein B-depleted plasma both with and without added cyclic adenosine monophosphate. In univariate analyses, faster skeletal muscle oxygen recovery time (lower tau) was significantly associated with higher levels of HDL cholesterol (HDL-C), ApoA-I, and larger mean HDL size, but not HDL cholesterol efflux capacity. Slower recovery time (higher tau) was positively associated with body mass index (BMI) and fasting plasma glucose (FPG). In multivariable linear regression analyses, higher levels of HDL-C and ApoA-I, as well as larger HDL size, were independently associated with faster skeletal muscle oxygen recovery times that persisted after adjusting for BMI and FPG (all P < 0.05). In conclusion, higher levels of HDL-C, ApoA-I, and larger mean HDL size were independently associated with enhanced skeletal muscle mitochondrial function in healthy humans.NEW & NOTEWORTHY Our study provides the first direct evidence supporting the beneficial role of HDL-C and ApoA-I on enhanced skeletal muscle mitochondrial function in healthy young to middle-aged humans without cardiometabolic disease.


Assuntos
Apolipoproteína A-I , Lipoproteínas HDL , Adulto , Pessoa de Meia-Idade , Animais , Humanos , Feminino , Adulto Jovem , Masculino , Estudos Transversais , HDL-Colesterol , Músculo Esquelético , Mitocôndrias , Oxigênio
2.
Arterioscler Thromb Vasc Biol ; 43(10): 2030-2041, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37615111

RESUMO

BACKGROUND: Impaired cholesterol efflux capacity (CEC) is a novel lipid metabolism trait associated with atherosclerotic cardiovascular disease. Mechanisms underlying CEC variation are unknown. We evaluated associations of circulating metabolites with CEC to advance understanding of metabolic pathways involved in cholesterol efflux regulation. METHODS: Participants enrolled in the MESA (Multi-Ethnic Study of Atherosclerosis) who underwent nuclear magnetic resonance metabolome profiling and CEC measurement (N=3543) at baseline were included. Metabolite associations with CEC were evaluated using standard linear regression analyses. Repeated ElasticNet and multilayer perceptron regression were used to assess metabolite profile predictive performance for CEC. Features important for CEC prediction were identified using Shapley Additive Explanations values. RESULTS: Greater CEC was significantly associated with metabolite clusters composed of the largest-sized particle subclasses of VLDL (very-low-density lipoprotein) and HDL (high-density lipoprotein), as well as their constituent apo A1, apo A2, phospholipid, and cholesterol components (ß=0.072-0.081; P<0.001). Metabolite profiles had poor accuracy for predicting in vitro CEC in linear and nonlinear analyses (R2<0.02; Spearman ρ<0.18). The most important feature for CEC prediction was race, with Black participants having significantly lower CEC compared with other races. CONCLUSIONS: We identified independent associations among CEC, the largest-sized particle subclasses of VLDL and HDL, and their constituent apolipoproteins and lipids. A large proportion of variation in CEC remained unexplained by metabolites and traditional clinical risk factors, supporting further investigation into genomic, proteomic, and phospholipidomic determinants of CEC.


Assuntos
Aterosclerose , Proteômica , Humanos , HDL-Colesterol , Lipoproteínas HDL , Colesterol , Aterosclerose/genética , Apolipoproteínas A
3.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958510

RESUMO

High-density lipoproteins (HDLs) are promising targets for predicting and treating atherosclerotic cardiovascular disease (ASCVD), as they mediate removal of excess cholesterol from lipid-laden macrophages that accumulate in the vasculature. This functional property of HDLs, termed cholesterol efflux capacity (CEC), is inversely associated with ASCVD. HDLs are compositionally diverse, associating with >250 different proteins, but their relative contribution to CEC remains poorly understood. Our goal was to identify and define key HDL-associated proteins that modulate CEC in humans. The proteomic signature of plasma HDL was quantified in 36 individuals in the multi-ethnic population-based Dallas Heart Study (DHS) cohort that exhibited persistent extremely high (>=90th%) or extremely low CEC (<=10th%) over 15 years. Levels of apolipoprotein (Apo)A-I associated ApoC-II, ApoC-III, and ApoA-IV were differentially correlated with CEC in high (r = 0.49, 0.41, and -0.21 respectively) and low (r = -0.46, -0.41, and 0.66 respectively) CEC groups (p for heterogeneity (pHet) = 0.03, 0.04, and 0.003 respectively). Further, we observed that levels of ApoA-I with ApoC-III, complement C3 (CO3), ApoE, and plasminogen (PLMG) were inversely associated with CEC in individuals within the low CEC group (r = -0.11 to -0.25 for subspecies with these proteins vs. r = 0.58 to 0.65 for subspecies lacking these proteins; p < 0.05 for heterogeneity). These findings suggest that enrichment of specific proteins on HDLs and, thus, different subspecies of HDLs, differentially modulate the removal of cholesterol from the vasculature.


Assuntos
Aterosclerose , Proteômica , Humanos , Apolipoproteína C-III , Lipoproteínas HDL , Colesterol/metabolismo , HDL-Colesterol/metabolismo
4.
Curr Opin Lipidol ; 33(4): 264-269, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36082946

RESUMO

PURPOSE OF REVIEW: A 'proteoform' is defined as one specific protein structural form that results from the combination of allelic variation, alternative RNA splicing, and/or posttranslational modifications (PTMs) in specific locations on the amino acid backbone. Apolipoproteins A1 and A2 are highly abundant apolipoproteins that mediate HDL structure and function. ApoA1 and apoA2 are known to undergo PTMs, which results in multiple proteoforms. However, the catalogue of apoA1 and apoA2 proteoforms as well as their associations with cardiometabolic health characteristics has not been described until recently. In this brief review, we discuss recent efforts to catalogue the spectrum of apoA1 and apoA2 proteoforms, to understand the relationships between the relative abundance of these proteoforms with cardiometabolic phenotypic characteristics, and we will discuss the implications of these findings to future research. RECENT FINDINGS: A broad spectrum of apoA1 and apoA2 proteoforms has been characterized. Although, the types of apoA1 and A2 proteoforms are consistent across individuals, the relative abundances of proteoforms can vary substantially between individuals. Proteoform-specific associations with cardiometabolic characteristics in humans, independent of absolute apolipoprotein abundance, have been described. These recent findings suggest multiple levels of protein structural variation that arise from known and unknown metabolic pathways may be important markers or mediators of cardiometabolic health. SUMMARY: Understanding the associations between apolipoprotein proteoforms and phenotype may lead to enhanced understanding of how apolipoproteins mediate lipid metabolism and affect atherosclerotic cardiovascular disease (ASCVD) risk, which may lead to discovery of novel markers of risk and/or key mechanistic insights that may drive further druggable targets for modifying lipid metabolism and reducing ASCVD risk.


Assuntos
Apolipoproteína A-II , Apolipoproteína A-I , Apolipoproteína A-I/genética , Apolipoproteína A-II/genética , Apolipoproteínas/genética , Aterosclerose/metabolismo , Humanos , Processamento de Proteína Pós-Traducional
5.
Circulation ; 143(23): 2293-2309, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34097448

RESUMO

Low high-density lipoprotein cholesterol (HDL-C) characterizes an atherogenic dyslipidemia that reflects adverse lifestyle choices, impaired metabolism, and increased cardiovascular risk. Low HDL-C is also associated with increased risk of inflammatory disorders, malignancy, diabetes, and other diseases. This epidemiologic evidence has not translated to raising HDL-C as a viable therapeutic target, partly because HDL-C does not reflect high-density lipoprotein (HDL) function. Mendelian randomization analyses that have found no evidence of a causal relationship between HDL-C levels and cardiovascular risk have decreased interest in increasing HDL-C levels as a therapeutic target. HDLs comprise distinct subpopulations of particles of varying size, charge, and composition that have several dynamic and context-dependent functions, especially with respect to acute and chronic inflammatory states. These functions include reverse cholesterol transport, inhibition of inflammation and oxidation, and antidiabetic properties. HDLs can be anti-inflammatory (which may protect against atherosclerosis and diabetes) and proinflammatory (which may help clear pathogens in sepsis). The molecular regulation of HDLs is complex, as evidenced by their association with multiple proteins, as well as bioactive lipids and noncoding RNAs. Clinical investigations of HDL biomarkers (HDL-C, HDL particle number, and apolipoprotein A through I) have revealed nonlinear relationships with cardiovascular outcomes, differential relationships by sex and ethnicity, and differential patterns with coronary versus noncoronary events. Novel HDL markers may also have relevance for heart failure, cancer, and diabetes. HDL function markers (namely, cholesterol efflux capacity) are associated with coronary disease, but they remain research tools. Therapeutics that manipulate aspects of HDL metabolism remain the holy grail. None has proven to be successful, but most have targeted HDL-C, not metrics of HDL function. Future therapeutic strategies should focus on optimizing HDL function in the right patients at the optimal time in their disease course. We provide a framework to help the research and clinical communities, as well as funding agencies and stakeholders, obtain insights into current thinking on these topics, and what we predict will be an exciting future for research and development on HDLs.


Assuntos
Lipoproteínas HDL/metabolismo , Aterosclerose/patologia , Colesterol/metabolismo , História do Século XXI , Humanos , Inflamassomos/metabolismo , Lipoproteínas HDL/sangue , Estresse Oxidativo , Proteômica , Pesquisa/história , Fatores de Risco
6.
Arterioscler Thromb Vasc Biol ; 41(10): 2588-2597, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34433296

RESUMO

Objective: Cholesterol efflux capacity (CEC), the ability of extracellular acceptors to pick-up cholesterol from macrophages, is a clinically relevant cardiovascular biomarker. CEC is inversely associated with incident atherosclerotic cardiovascular disease events. However, CEC is only modestly associated with HDL-C (high-density lipoprotein cholesterol) levels, which may explain the failure of HDL-C raising therapies to improve atherosclerotic cardiovascular disease outcomes. Determinants of variation in CEC are not well understood. Thus, we sought to establish whether extreme high and low CEC is a robust persistent phenotype and to characterize associations with cholesterol, protein, and phospholipids across the particle size distribution. Approach and Results: CEC was previously measured in 2924 participants enrolled in the Dallas Heart Study, a multi-ethnic population-based study from 2000 to 2002. We prospectively recruited those who were below the 10th and above 90th percentile of CEC. Our study revealed that extreme low and high CEC are persistent, robust phenotypes after 15 years of follow-up. Using size exclusion chromatography, CEC to fractionated plasma depleted of apolipoprotein B (fraction-specific CEC) demonstrated significant differences in CEC patterns between persistent high and low efflux groups. Fraction-specific CEC was correlated with fraction-specific total phospholipid but not apolipoprotein A-I, cholesterol, or total protein. These correlations varied across the size distribution and differed among persistent high versus low efflux groups. Conclusions: Extreme high and low CEC are persistent and robust phenotypes. CEC patterns in fractionated plasma reveal marked variation across the size distribution. Future studies are warranted to determine specific molecular species linked to CEC in a size-specific manner.


Assuntos
Colesterol/sangue , Macrófagos/metabolismo , Fosfolipídeos/sangue , Idoso , Animais , Apolipoproteína A-I/sangue , Apolipoproteína B-100/sangue , Transporte Biológico , Linhagem Celular , Feminino , Seguimentos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Tamanho da Partícula , Estudos Prospectivos , Texas , Fatores de Tempo
7.
Circulation ; 142(7): 657-669, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32804568

RESUMO

BACKGROUND: High-density lipoprotein (HDL) cholesterol concentration (HDL-C) is an established atheroprotective marker, in particular for coronary artery disease; however, HDL particle concentration (HDL-P) may better predict risk. The associations of HDL-C and HDL-P with ischemic stroke and myocardial infarction (MI) among women and Blacks have not been well studied. We hypothesized that HDL-P would consistently be associated with MI and stroke among women and Blacks compared with HDL-C. METHODS: We analyzed individual-level participant data in a pooled cohort of 4 large population studies without baseline atherosclerotic cardiovascular disease: DHS (Dallas Heart Study; n=2535), ARIC (Atherosclerosis Risk in Communities; n=1595), MESA (Multi-Ethnic Study of Atherosclerosis; n=6632), and PREVEND (Prevention of Renal and Vascular Endstage Disease; n=5022). HDL markers were analyzed in adjusted Cox proportional hazard models for MI and ischemic stroke. RESULTS: In the overall population (n=15 784), HDL-P was inversely associated with the combined outcome of MI and ischemic stroke, adjusted for cardiometabolic risk factors (hazard ratio [HR] for quartile 4 [Q4] versus quartile 1 [Q1], 0.64 [95% CI, 0.52-0.78]), as was HDL-C (HR for Q4 versus Q1, 0.76 [95% CI, 0.61-0.94]). Adjustment for HDL-C did not attenuate the inverse relationship between HDL-P and atherosclerotic cardiovascular disease, whereas adjustment for HDL-P attenuated all associations between HDL-C and events. HDL-P was inversely associated with the individual end points of MI and ischemic stroke in the overall population, including in women. HDL-P was inversely associated with MI among White participants but not among Black participants (HR for Q4 versus Q1 for Whites, 0.49 [95% CI, 0.35-0.69]; for Blacks, 1.22 [95% CI, 0.76-1.98]; Pinteraction=0.001). Similarly, HDL-C was inversely associated with MI among White participants (HR for Q4 versus Q1, 0.53 [95% CI, 0.36-0.78]) but had a weak direct association with MI among Black participants (HR for Q4 versus Q1, 1.75 [95% CI, 1.08-2.83]; Pinteraction<0.0001). CONCLUSIONS: Compared with HDL-C, HDL-P was consistently associated with MI and ischemic stroke in the overall population. Differential associations of both HDL-C and HDL-P for MI by Black ethnicity suggest that atherosclerotic cardiovascular disease risk may differ by vascular domain and ethnicity. Future studies should examine individual outcomes separately.


Assuntos
Negro ou Afro-Americano , HDL-Colesterol/sangue , Doença da Artéria Coronariana , AVC Isquêmico , Infarto do Miocárdio , População Branca , Adulto , Idoso , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/etnologia , Feminino , Humanos , AVC Isquêmico/sangue , AVC Isquêmico/etnologia , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Infarto do Miocárdio/etnologia
8.
Circulation ; 140(24): 2005-2018, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31597453

RESUMO

BACKGROUND: Obesity-related hypertension is a common disorder, and attempts to combat the underlying obesity are often unsuccessful. We previously revealed that mice globally deficient in the inhibitory immunoglobulin G (IgG) receptor FcγRIIB are protected from obesity-induced hypertension. However, how FcγRIIB participates is unknown. Studies were designed to determine if alterations in IgG contribute to the pathogenesis of obesity-induced hypertension. METHODS: Involvement of IgG was studied using IgG µ heavy chain-null mice deficient in mature B cells and by IgG transfer. Participation of FcγRIIB was interrogated in mice with global or endothelial cell-specific deletion of the receptor. Obesity was induced by high-fat diet (HFD), and blood pressure (BP) was measured by radiotelemetry or tail cuff. The relative sialylation of the Fc glycan on mouse IgG, which influences IgG activation of Fc receptors, was evaluated by Sambucus nigra lectin blotting. Effects of IgG on endothelial NO synthase were assessed in human aortic endothelial cells. IgG Fc glycan sialylation was interrogated in 3442 human participants by mass spectrometry, and the relationship between sialylation and BP was evaluated. Effects of normalizing IgG sialylation were determined in HFD-fed mice administered the sialic acid precursor N-acetyl-D-mannosamine (ManNAc). RESULTS: Mice deficient in B cells were protected from obesity-induced hypertension. Compared with IgG from control chow-fed mice, IgG from HFD-fed mice was hyposialylated, and it raised BP when transferred to recipients lacking IgG; the hypertensive response was absent if recipients were FcγRIIB-deficient. Neuraminidase-treated IgG lacking the Fc glycan terminal sialic acid also raised BP. In cultured endothelial cells, via FcγRIIB, IgG from HFD-fed mice and neuraminidase-treated IgG inhibited vascular endothelial growth factor activation of endothelial NO synthase by altering endothelial NO synthase phosphorylation. In humans, obesity was associated with lower IgG sialylation, and systolic BP was inversely related to IgG sialylation. Mice deficient in FcγRIIB in endothelium were protected from obesity-induced hypertension. Furthermore, in HFD-fed mice, ManNAc normalized IgG sialylation and prevented obesity-induced hypertension. CONCLUSIONS: Hyposialylated IgG and FcγRIIB in endothelium are critically involved in obesity-induced hypertension in mice, and supportive evidence was obtained in humans. Interventions targeting these mechanisms, such as ManNAc supplementation, may provide novel means to break the link between obesity and hypertension.


Assuntos
Hexosaminas/farmacologia , Hipertensão/tratamento farmacológico , Ácido N-Acetilneuramínico/metabolismo , Obesidade/tratamento farmacológico , Animais , Suplementos Nutricionais , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Hipertensão/metabolismo , Imunoglobulina G/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptores de IgG/metabolismo
9.
Circulation ; 138(21): 2315-2325, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30571575

RESUMO

BACKGROUND: The associations of low-density lipoprotein cholesterol (LDL-C) with cardiovascular disease (CVD) and coronary heart disease mortality in an exclusively low estimated 10-year risk group are not well delineated. We sought to determine the long-term associations of various LDL-C and non-high-density lipoprotein cholesterol (HDL-C) thresholds and CVD and coronary heart disease mortality in a large, low 10-year risk cohort. METHODS: The study sample included participants of the CCLS (Cooper Center Longitudinal Study) without a history of CVD or diabetes mellitus and defined as low risk (<7.5%) for 10-year atherosclerotic CVD events at baseline based on Pooled Cohort Risk Assessment Equations. The associations of fasting LDL-C and non-HDL-C with CVD mortality were tested with Cox proportional hazards models. RESULTS: In 36 375 participants (72% men, median age 42) followed for a median of 26.8 years, 1086 CVD and 598 coronary heart disease deaths occurred. Compared with LDL-C <100 mg/dL, LDL-C categories 100 to 129 mg/dL, 130 to 159 mg/dL, 160 to 189.9 mg/dL, and ≥190 mg/dL were associated with a significantly higher risk of CVD death, with hazard ratios of 1.4 (95% CI, 1.1-1.7), 1.3 (95% CI, 1.1-1.6), 1.9 (95% CI, 1.5-2.4), and 1.7 (95% CI, 1.3-2.3), and mean reductions in years free of CVD death of 1.8, 1.1, 4.3, and 3.9, respectively. After adjustment for atherosclerotic CVD risk factors, LDL-C categories 160 to 189 mg/dL and ≥190 mg/dL remained independently associated with CVD mortality, with hazard ratios of 1.7 (95% CI, 1.4-2.2) and 1.5 (95% CI, 1.2-2.1), respectively. In multivariable-adjusted models using non-HDL-C <130 mg/dL as the reference, non-HDL-C 160 to 189 mg/dL, 190 to 219 mg/dL, and ≥220 mg/dL were significantly associated with CVD death, with hazard ratios of 1.3 (95% CI, 1.1-1.6), 1.8 (95% CI, 1.4-2.2), and 1.5 (95% CI, 1.2-2.0), respectively. Restricting the cohort to those with 10-year risk <5% did not diminish the associations of LDL-C and non-HDL-C with CVD mortality. CONCLUSIONS: In a low 10-year risk cohort with long-term follow-up, LDL-C and non-HDL-C ≥160 mg/dL were independently associated with a 50% to 80% increased relative risk of CVD mortality. These findings may have implications for future cholesterol treatment paradigms.


Assuntos
Doenças Cardiovasculares/patologia , LDL-Colesterol/sangue , Adulto , Doenças Cardiovasculares/mortalidade , HDL-Colesterol/sangue , Feminino , Seguimentos , Humanos , Estimativa de Kaplan-Meier , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Fatores de Risco , Triglicerídeos/sangue
10.
Arterioscler Thromb Vasc Biol ; 38(4): 943-952, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29437573

RESUMO

OBJECTIVE: Measures of HDL (high-density lipoprotein) function are associated with cardiovascular disease. However, the effects of regular exercise on these measures is largely unknown. Thus, we examined the effects of different doses of exercise on 3 measures of HDL function in 2 randomized clinical exercise trials. APPROACH AND RESULTS: Radiolabeled and boron dipyrromethene difluoride-labeled cholesterol efflux capacity and HDL-apoA-I (apolipoprotein A-I) exchange were assessed before and after 6 months of exercise training in 2 cohorts: STRRIDE-PD (Studies of Targeted Risk Reduction Interventions through Defined Exercise, in individuals with Pre-Diabetes; n=106) and E-MECHANIC (Examination of Mechanisms of exercise-induced weight compensation; n=90). STRRIDE-PD participants completed 1 of 4 exercise interventions differing in amount and intensity. E-MECHANIC participants were randomized into 1 of 2 exercise groups (8 or 20 kcal/kg per week) or a control group. HDL-C significantly increased in the high-amount/vigorous-intensity group (3±5 mg/dL; P=0.02) of STRRIDE-PD, whereas no changes in HDL-C were observed in E-MECHANIC. In STRRIDE-PD, global radiolabeled efflux capacity significantly increased 6.2% (SEM, 0.06) in the high-amount/vigorous-intensity group compared with all other STRRIDE-PD groups (range, -2.4 to -8.4%; SEM, 0.06). In E-MECHANIC, non-ABCA1 (ATP-binding cassette transporter A1) radiolabeled efflux significantly increased 5.7% (95% CI, 1.2-10.2%) in the 20 kcal/kg per week group compared with the control group, with no change in the 8 kcal/kg per week group (2.6%; 95% CI, -1.4 to 6.7%). This association was attenuated when adjusting for change in HDL-C. Exercise training did not affect BODIPY-labeled cholesterol efflux capacity or HDL-apoA-I exchange in either study. CONCLUSIONS: Regular prolonged vigorous exercise improves some but not all measures of HDL function. Future studies are warranted to investigate whether the effects of exercise on cardiovascular disease are mediated in part by improving HDL function. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifiers: NCT00962962 and NCT01264406.


Assuntos
HDL-Colesterol/sangue , Terapia por Exercício , Obesidade/terapia , Estado Pré-Diabético/terapia , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Adolescente , Adulto , Idoso , Apolipoproteína A-I/sangue , Biomarcadores/sangue , Feminino , Nível de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/diagnóstico , Obesidade/fisiopatologia , Estado Pré-Diabético/sangue , Estado Pré-Diabético/diagnóstico , Estado Pré-Diabético/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
11.
Circulation ; 135(6): 544-555, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28153991

RESUMO

BACKGROUND: Few data are available comparing cardiovascular disease (CVD) biomarker profiles between women and men in the general population. We analyzed sex-based differences in multiple biomarkers reflecting distinct pathophysiological pathways, accounting for differences between women and men in CVD risk factors, body composition, and cardiac morphology. METHODS: A cross-sectional analysis was performed using data from the Dallas Heart Study, a multiethnic population-based study. Associations between sex and 30 distinct biomarkers representative of 6 pathophysiological categories were evaluated using multivariable linear regression adjusting for age, race, traditional CVD risk factors, kidney function, insulin resistance, MRI and dual-energy x-ray absorptiometry measures of body composition and fat distribution, and left ventricular mass. RESULTS: After excluding participants with CVD, the study population included 3439 individuals, mean age 43 years, 56% women, and 52% black. Significant sex-based differences were seen in multiple categories of biomarkers, including lipids, adipokines, and biomarkers of inflammation, endothelial dysfunction, myocyte injury and stress, and kidney function. In fully adjusted models, women had higher levels of high-density lipoprotein cholesterol and high-density lipoprotein particle concentration, leptin, d-dimer, homoarginine, and N-terminal pro B-type natriuretic peptide, and lower levels of low-density lipoprotein cholesterol, adiponectin, lipoprotein-associated phospholipase A2 mass and activity, monocyte chemoattractant protein-1, soluble endothelial cell adhesion molecule, symmetrical dimethylarginine, asymmetrical dimethylarginine, high-sensitivity troponin T, and cystatin C. CONCLUSIONS: Biomarker profiles differ significantly between women and men in the general population. Sex differences were most apparent for biomarkers of adiposity, endothelial dysfunction, inflammatory cell recruitment, and cardiac stress and injury. Future studies are needed to characterize whether pathophysiological processes delineated by these biomarkers contribute to sex-based differences in the development and complications of CVD.


Assuntos
Biomarcadores/metabolismo , Doenças Cardiovasculares/sangue , Adulto , Doenças Cardiovasculares/fisiopatologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Fatores Sexuais
12.
Clin Proteomics ; 15: 10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527140

RESUMO

BACKGROUND: Metabolic diseases such as obesity and diabetes are associated with changes in high-density lipoprotein (HDL) particles, including changes in particle size and protein composition, often resulting in abnormal function. Recent studies suggested that patients with non-alcoholic fatty liver disease (NAFLD), including individuals with non-alcoholic steatohepatitis (NASH), have smaller HDL particles when compared to individuals without liver pathologies. However, no studies have investigated potential changes in HDL particle protein composition in patients with NAFLD, in addition to changes related to obesity, to explore putative functional changes of HDL which may increase the risk of cardiovascular complications. METHODS: From a cohort of morbidly obese females who were diagnosed with simple steatosis (SS), NASH, or normal liver histology, we selected five matched individuals from each condition for a preliminary pilot HDL proteome analysis. HDL particles were enriched using size-exclusion chromatography, and the proteome of the resulting fraction was analyzed by liquid chromatography tandem mass spectrometry. Differences in the proteomes between the three conditions (normal, SS, NASH) were assessed using label-free quantitative analysis. Gene ontology term analysis was performed to assess the potential impact of proteomic changes on specific functions of HDL particles. RESULTS: Of the 95 proteins identified, 12 proteins showed nominally significant differences between the three conditions. Gene ontology term analysis revealed that severity of the liver pathology may significantly impact the anti-thrombotic functions of HDL particles, as suggested by changes in the abundance of HDL-associated proteins such as antithrombin III and plasminogen. CONCLUSIONS: The pilot data from this study suggest that changes in the HDL proteome may impact the functionality of HDL particles in NAFLD and NASH patients. These proteome changes may alter cardio-protective properties of HDL, potentially contributing to the increased cardiovascular disease risk in affected individuals. Further validation of these protein changes by orthogonal approaches is key to confirming the role of alterations in the HDL proteome in NAFLD and NASH. This will help elucidate the mechanistic effects of the altered HDL proteome on cardioprotective properties of HDL particles.

14.
N Engl J Med ; 371(25): 2383-93, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25404125

RESUMO

BACKGROUND: It is unclear whether high-density lipoprotein (HDL) cholesterol concentration plays a causal role in atherosclerosis. A more important factor may be HDL cholesterol efflux capacity, the ability of HDL to accept cholesterol from macrophages, which is a key step in reverse cholesterol transport. We investigated the epidemiology of cholesterol efflux capacity and its association with incident atherosclerotic cardiovascular disease outcomes in a large, multiethnic population cohort. METHODS: We measured HDL cholesterol level, HDL particle concentration, and cholesterol efflux capacity at baseline in 2924 adults free from cardiovascular disease who were participants in the Dallas Heart Study, a probability-based population sample. The primary end point was atherosclerotic cardiovascular disease, defined as a first nonfatal myocardial infarction, nonfatal stroke, or coronary revascularization or death from cardiovascular causes. The median follow-up period was 9.4 years. RESULTS: In contrast to HDL cholesterol level, which was associated with multiple traditional risk factors and metabolic variables, cholesterol efflux capacity had minimal association with these factors. Baseline HDL cholesterol level was not associated with cardiovascular events in an adjusted analysis (hazard ratio, 1.08; 95% confidence interval [CI], 0.59 to 1.99). In a fully adjusted model that included traditional risk factors, HDL cholesterol level, and HDL particle concentration, there was a 67% reduction in cardiovascular risk in the highest quartile of cholesterol efflux capacity versus the lowest quartile (hazard ratio, 0.33; 95% CI, 0.19 to 0.55). Adding cholesterol efflux capacity to traditional risk factors was associated with improvement in discrimination and reclassification indexes. CONCLUSIONS: Cholesterol efflux capacity, a new biomarker that characterizes a key step in reverse cholesterol transport, was inversely associated with the incidence of cardiovascular events in a population-based cohort. (Funded by the Donald W. Reynolds Foundation and others.).


Assuntos
Doenças Cardiovasculares/metabolismo , Lipoproteínas HDL/metabolismo , Adulto , Aterosclerose/epidemiologia , Aterosclerose/metabolismo , Transporte Biológico , Biomarcadores/metabolismo , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/mortalidade , LDL-Colesterol/sangue , Feminino , Seguimentos , Humanos , Incidência , Lipoproteínas HDL/sangue , Masculino , Pessoa de Meia-Idade , Fatores de Risco
15.
Am Heart J ; 191: 55-61, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28888270

RESUMO

BACKGROUND: Cell adhesion molecules are key regulators of atherosclerotic plaque development, but circulating levels of soluble fragments, such as intercellular adhesion molecule (sICAM-1) and vascular cell adhesion molecule (sVCAM-1), have yielded conflicting associations with atherosclerotic cardiovascular disease (ASCVD). Endothelial cell-selective adhesion molecule (ESAM) is expressed exclusively in platelets and endothelial cells, and soluble ESAM (sESAM) levels have been associated with prevalent subclinical atherosclerosis. We therefore hypothesized that sESAM would be associated with incident ASCVD. METHODS: sESAM, sICAM-1, and sVCAM-1 were measured in 2,442 participants without CVD in the Dallas Heart Study, a probability-based population sample aged 30-65 years enrolled between 2000 and 2002. ASCVD was defined as first myocardial infarction, stroke, coronary revascularization, or CV death. A total of 162 ASCVD events were analyzed over 10.4 years. RESULTS: Increasing sESAM was associated with ASCVD, independent of risk factors (HR Q4 vs Q1: 2.7, 95% CI 1.6-4.6). Serial adjustment for renal function, sICAM-1, VCAM-1, and prevalent coronary calcium did not attenuate these associations. Continuous ESAM demonstrated similar findings (HR 1.31, 95% CI 1.2-1.4). Addition of sESAM to traditional risk factors improved discrimination and reclassification (delta c-index: P = .009; integrated-discrimination-improvement index P = .001; net reclassification index = 0.42, 95% CI 0.15-0.68). Neither sICAM-1 nor sVCAM-1 was independently associated with ASCVD. CONCLUSIONS: sESAM but not sICAM-1 or sVCAM-1 levels are associated with incident ASCVD. Further studies are warranted to investigate the role of sESAM in ASCVD.


Assuntos
Doenças Cardiovasculares/etnologia , Moléculas de Adesão Celular/sangue , Moléculas de Adesão Celular/efeitos da radiação , Etnicidade , Vigilância da População , Medição de Risco , Adulto , Idoso , Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Feminino , Humanos , Incidência , Molécula 1 de Adesão Intercelular/sangue , Masculino , Pessoa de Meia-Idade , Prognóstico , Texas/epidemiologia , Molécula 1 de Adesão de Célula Vascular/sangue
16.
Curr Opin Lipidol ; 27(4): 398-407, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27213627

RESUMO

PURPOSE OF REVIEW: Low HDL-cholesterol (HDL-C) levels are predictive of incident atherosclerotic cardiovascular disease events. However, the use of medication to raise HDL-C levels has not consistently shown clinical benefit. As a result, studies have shifted toward HDL function, specifically cholesterol efflux, which has been inversely associated with prevalent subclinical atherosclerosis as well as subsequent atherosclerotic cardiovascular disease events. The purpose of this review is to summarize the effects of current medications and interventions on cholesterol efflux capacity. RECENT FINDINGS: Medications for cardiovascular health, including statins, fibrates, niacin, and novel therapeutics, are reviewed for their effect on cholesterol efflux. Differences in population studied and assay used are addressed appropriately. Lifestyle interventions, including diet and exercise, are also included in the review. SUMMARY: The modification of cholesterol efflux capacity (CEC) by current medications and interventions has been investigated in both large randomized control trials and smaller observational cohorts. This review serves to compile the results of these studies and evaluate CEC modulation by commonly used medications. Altering CEC could be a novel therapeutic approach to improving cardiovascular risk profiles.


Assuntos
Doenças Cardiovasculares/metabolismo , Colesterol/metabolismo , Transporte Biológico/efeitos dos fármacos , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/dietoterapia , Doenças Cardiovasculares/tratamento farmacológico , Terapia por Exercício , Humanos , Hipoglicemiantes/farmacologia
17.
Curr Atheroscler Rep ; 18(1): 2, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26710794

RESUMO

Low high-density lipoprotein cholesterol (HDL-C) levels are associated with incident cardiovascular events; however, many therapies targeting increases in HDL-C have failed to show consistent clinical benefit. Thus, focus has recently shifted toward measuring high-density lipoprotein (HDL) function. HDL is the key mediator of reverse cholesterol transport, the process of cholesterol extraction from foam cells, and eventual excretion into the biliary system. Cholesterol efflux from peripheral macrophages to HDL particles has been associated with atherosclerosis in both animals and humans. We review the mechanism of cholesterol efflux and the emerging evidence on the association between cholesterol efflux capacity and cardiovascular disease in human studies. We also focus on the completed and ongoing trials of novel therapies targeting different aspects of HDL cholesterol efflux.


Assuntos
Doenças Cardiovasculares/metabolismo , HDL-Colesterol/metabolismo , Animais , Aterosclerose/tratamento farmacológico , Transporte Biológico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/etiologia , Humanos , Macrófagos/metabolismo , Fatores de Risco
18.
Curr Atheroscler Rep ; 17(8): 43, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26048725

RESUMO

High-density lipoprotein cholesterol (HDL-C) has been shown in epidemiologic studies to be associated with cardiovascular (CV) risk and thus significant efforts have been focused on HDL-C modulation. Multiple pharmaceutical agents have been developed with the goal of increasing HDL-C. Niacin, the most widely used medication to raise HDL-C, increases HDL-C by up to 25 % and was shown in multiple surrogate end point studies to reduce CV risk. However, two large randomized controlled trials of niacin, AIM-HIGH and HPS2-THRIVE, have shown that despite its effects on HDL-C, niacin does not decrease the incidence of CV events and may have significant adverse effects. Studies of other classes of agents such as cholesteryl ester transfer protein (CETP) inhibitors have also shown that even dramatic increases in HDL-C do not necessarily translate to reduction in clinical events. While these findings have cast doubt upon the importance of HDL-C modulation on CV risk, it is becoming increasingly clear that HDL function-related measures may be better targets for CV risk reduction. Increasing ApoA-I, the primary apolipoprotein associated with HDL, correlates with reduced risk of events, and HDL particle concentration (HDL-P) inversely associates with incident CV events adjusted for HDL-C and LDL particle measures. Cholesterol efflux, the mechanism by which macrophages in vessel walls secrete cholesterol outside cells, correlates with both surrogate end points and clinical events. The effects of niacin on these alternate measures of HDL have been conflicting. Further studies should determine if modulation of these HDL function markers translates to clinical benefits. Although the HDL cholesterol hypothesis may be defunct, the HDL function hypothesis is now poised to be rigorously tested.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , HDL-Colesterol/sangue , Colesterol/sangue , Hipolipemiantes/uso terapêutico , Niacina/uso terapêutico , Doenças Cardiovasculares/etiologia , Humanos
20.
Curr Atheroscler Rep ; 16(3): 394, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24445969

RESUMO

Advanced lipid testing has been suggested by some experts to identify patients with substantial residual risk for more aggressive targeting of lifestyle and pharmacologic therapies. It measures the subpopulation of lipoproteins and apolipoproteins, which include lipoprotein (a), apolipoprotein A-I, and apolipoprotein B, and measures of lipoprotein particle composition such as LDL particle (LPL-P) and HDL particle (HDL-P) number and size. Obesity is associated with smaller LDL-P and HDL-P sizes. Moderate weight loss via fasting/calorie restriction is associated with LDL-P size increase, whereas moderate weight loss via endurance exercise is associated with HDL-P size increase. Diets high in carbohydrates are associated with a more atherogenic advanced lipoprotein profile characterized by smaller LDL-P and HDL-P sizes. In summary, lifestyle changes such as weight loss, exercise, and dietary modification correlate with improvement in the profile of advanced lipoproteins. Regrettably, therapies targeting HDL and HDL composition have been disappointing to date.


Assuntos
Apolipoproteínas , Doenças Cardiovasculares , Hipolipemiantes/farmacologia , Lipoproteínas , Comportamento de Redução do Risco , Apolipoproteínas/análise , Apolipoproteínas/metabolismo , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/prevenção & controle , Exercício Físico/fisiologia , Comportamento Alimentar/fisiologia , Humanos , Imunoensaio/métodos , Metabolismo dos Lipídeos , Lipoproteínas/análise , Lipoproteínas/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Valor Preditivo dos Testes , Prognóstico , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA