Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Clin Oral Implants Res ; 35(4): 419-426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38329172

RESUMO

OBJECTIVES: To simulate the replacement of a premolar with an implant-supported cantilever fixed dental prosthesis (ICFDP) and how the fracture load is affected by implant type, positioning within the zirconia blank, and aging protocol. MATERIALS AND METHODS: Seventy-two ICFDPs were designed either within the enamel- or dentin layer of a 4Y-PSZ blank for bone-level and tissue-level titanium-zirconium implants. Fracture load was obtained on the cantilever at baseline (no aging) or after aging in a chewing simulator with the load applied within the implant axis (axial aging) or on the cantilever (12 groups with n = 6). A three-way ANOVA was applied (α = .05). RESULTS: A three-way ANOVA revealed a significant effect on fracture load values of implant type (p = .006) and aging (p < .001) but not for the position within the zirconia blank (p = .847). Fracture load values significantly increased from baseline bone level (608 ± 118 N) and tissue level (880 ± 293 N) when the implants were aged axially, with higher values for tissue level (1065 ± 182 N) than bone level (797 ± 113 N) (p < .001). However, when the force was applied to the cantilever, fracture load values decreased significantly for tissue-level (493 ± 70 N), while values for bone-level implants remained stable (690 ± 135 N). CONCLUSIONS: For ICFDPs, the use of bone-level implants is reasonable as catastrophic failures are likely to be restricted to the restoration, whereas with tissue-level implants, the transmucosal portion of the implant is susceptible to deformation, making repair more difficult.


Assuntos
Implantes Dentários , Prótese Dentária Fixada por Implante , Análise do Estresse Dentário , Zircônio , Falha de Restauração Dentária , Teste de Materiais
2.
J Esthet Restor Dent ; 36(5): 804-812, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308570

RESUMO

OBJECTIVE: The composition of universal adhesives is highly diverse. The purpose of this in vitro study was to compare the shear bond strength of a composite with five different universal adhesives to human enamel and dentin. MATERIALS AND METHODS: The shear bond strength of a composite (G-aenial Universal Injectable) to human enamel and dentin was tested in selective enamel etching mode before and after thermocyclic aging (10,000 cycles) using five different universal adhesive systems (Adhese Universal VivaPen, Clearfil Universal Bond Quick, G-Premio Bond, Prime&Bond active, and Scotchbond Universal Plus). Two-bottle systems (OptiBond FL and G2-Bond Universal) were used as control. Scanning electron microscopy was conducted of the bonding interface. RESULTS: Significant differences in shear bond strength values were found among the five evaluated universal adhesives. Lowest shear bond strength values were observed for 2-hydroxyethylmethacrylate (HEMA)-free systems. Thermocyclic aging did not significantly reduce shear bond strength values indicating that the initial bond remains stable. CONCLUSIONS: The clinical use of universal adhesives Adhese Universal VivaPen, Clearfil Universal Bond Quick, and Scotchbond Universal Plus can be encouraged as they provided comparable or even better shear bond strength values than the two-bottle controls. CLINICAL SIGNIFICANCE: Universal adhesives that were developed for the same indication and approved for clinical use demonstrated variety in shear bond strength values. When applied in the selective enamel etching mode, a stable bond can be expected from adhesives containing HEMA and monomers with phosphate groups.


Assuntos
Colagem Dentária , Cimentos Dentários , Humanos , Adesivos Dentinários/química , Teste de Materiais , Cimentos de Resina/química , Esmalte Dentário , Dentina
3.
Clin Oral Implants Res ; 34(10): 1118-1126, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37489537

RESUMO

OBJECTIVES: Composition of implant material and its surface structure is decisive for oral biofilm accumulation. This study investigated biofilm formation on eight different materials. MATERIALS AND METHODS: Eighteen healthy subjects wore intraoral splints fitted with two sets of eight materials for 24 h: zirconia [ZrO2 ]; silver-gold-palladium [AgAuPd]; titanium zirconium [TiZr]; Pagalinor [PA]; hydroxyapatite [HA]; silver-platinum [AgPt]; titanium aluminum niobium [TAN]; titanium grade4 [TiGr4]. Total biomass was stained by safranin to assess plaque accumulation while conventional culturing (CFU) was conducted to investigate viable parts of the biofilm. Cell viability of human gingival fibroblasts (HGF-1) was assessed in vitro. Statistical evaluation was performed with linear mixed-effects models to compare materials (geometric mean ratios, 95% CI), with the level of significance set at ɑ = .05. RESULTS: Less biofilm mass and CFU were found on noble metal alloys (AgPt, AgAuPd, and PA). Compared to AgPt, PA had 2.7-times higher biofilm mass value, AgAuPd was 3.9-times, TiGr4 was 4.1-times, TiZr was 5.9-times, TAN was 7.7-times, HA was 7.8-times, and ZrO2 was 9.1-times higher (each p < .001). Similarly, CFU data were significantly lower on AgPt, AgAuPd had 4.1-times higher CFU values, PA was 8.9-times, TiGr4 was 11.2-times, HA was 12.5-times, TiZr was 13.3-times, TAN was 16.9-times, and ZrO2 was 18.5-times higher (each p < .001). HGF-1 viability varied between 47 ± 24.5% (HA) and 94.4 ± 24.6% (PA). CONCLUSION: Noble alloys are considered as beneficial materials for the transmucosal part of oral implants, as less biofilm mass, lower bacterial counts, and greater cell viability were detected than on titanium- or zirconia-based materials.


Assuntos
Implantes Dentários , Zircônio , Humanos , Zircônio/química , Implantes Dentários/microbiologia , Durapatita/farmacologia , Titânio/química , Prata , Materiais Dentários/química , Biofilmes , Ligas , Propriedades de Superfície
4.
J Prosthet Dent ; 129(6): 939-945, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34598769

RESUMO

STATEMENT OF PROBLEM: Occlusal devices can be either conventionally processed, milled, or printed. However, little is known about the biocompatibility of 3D printing resin materials. PURPOSE: The purpose of this in vitro study was to compare the viability and morphology of human gingival fibroblast cells (HFG-1) after cultivation on conventionally processed, milled, and printed occlusal device materials with different surface treatments. MATERIAL AND METHODS: Disks of a conventionally processed (PalaXpress Clear [pP]), milled (Yamahachi PMMA Clear [sY]), and 2 different printed materials (Dental LT Clear Resin [aD]; Freeprint splint [aF]) were prepared. The surfaces of the specimens were finished by using 2 different treatments (unpolished and polished with P1200-grit silicon carbide paper). HGF-1 cells were cultivated on the specimens for 24 hours, and a viability assay was performed by using polystyrene disks as a control (n=9 disks per group). Cell morphology and the topography of the specimens were examined with scanning electron microscopy (n=3 disks per group). Two-way analysis of variance was applied to determine the effect of material and surface treatment followed by the post hoc Fisher least significant difference test (α=.05). RESULTS: Overall, material (P<.001) and surface treatment (P<.001) significantly influenced the viability of HGF-1 cells. The viability of cells on all specimens displayed mean values between 0.85 and 1.01 compared with the control except for unpolished aD (0.00 ±0.07) and aF (0.02 ±0.05) that had only a few cells with a round shape. CONCLUSIONS: The behavior of HGF-1 cells on conventionally processed and milled specimens was similar and not dependent on the surface treatment. Unpolished printed specimens had a cytotoxic effect. However, after polishing, cell behavior was similar to that of the conventionally processed and milled specimens.


Assuntos
Materiais Dentários , Impressão Tridimensional , Humanos , Teste de Materiais , Fibroblastos , Propriedades de Superfície
5.
J Appl Microbiol ; 132(2): 1018-1024, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34480822

RESUMO

AIMS: In the context of minor orthodontic intervention using clear aligner technologies, we determined antimicrobial properties of a cellulose-based material loaded with essential oils such as cinnamaldehyde. METHODS AND RESULTS: Isothermal microcalorimetry was used to assess the growth of bacterial biofilms at the interface between the tested material and the solid growth medium. The calorimetric data were analyzed using conventional growth models (Gompertz and Richards), and inhibition at 12 and 24 h was calculated. CONCLUSIONS: The tested material showed antimicrobial properties against Staphylococcus epidermidis as well as Streptococcus mutans and Streptococcus mitis clinical isolates. The inhibition was more pronounced against S. epidermidis, for which growth rate was reduced by 70% and lag phase was extended by 12 h. For S. mutans and S. mitis, the decrease in growth rate was 20% and 10%, and the lag phase increased by 2 and 6 h, respectively. SIGNIFICANCE AND IMPACT: Clear aligners for minor teeth alignment are becoming very popular. As they must be worn for at least 22 h per day for up to 40 weeks, it is important that they remain clean and do not promote caries formation or other oral infections. Therefore, introducing material with antimicrobial properties is expected to maintain oral hygiene during the aligner therapy. Here, we demonstrate the use of cinnamaldehyde for reducing microbial growth and biofilm formation on cellulose-based dental clear aligners.


Assuntos
Anti-Infecciosos , Cárie Dentária , Acroleína/análogos & derivados , Anti-Infecciosos/farmacologia , Biofilmes , Celulose , Humanos , Streptococcus mutans
6.
Clin Oral Implants Res ; 33(4): 424-432, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35137461

RESUMO

OBJECTIVES: To determine whether the surface treatment of zirconia affects biofilm formation in an in vitro three-species biofilm model and in situ. MATERIAL AND METHODS: Zirconia surfaces considered for the transmucosal portion of a zirconia implant were compared with polished pure titanium grade 4 (Tp). Disks 13 mm in diameter of either polished (Zp), polished and heat-treated (Zpt), machined (Zm), machined and heat-treated (Zmt) and sandblasted, etched and heat-treated (Z14) zirconia were fabricated. Surface roughness and wettability of specimens was measured. Biofilm formation was evaluated by safranin staining and scanning electron microscopy (SEM) using a three-species model, and intraorally with 16 volunteers carrying oral splints in two independent experiments. Relative biofilm formation was compared with Kruskal-Wallis followed by Bonferroni post hoc test (α = 0.05). RESULTS: In vitro biofilm formation with optical density values on Zp (0.14 ± 0.01), Zpt (0.14 ± 0.02), Zm (0.13 ± 0.01) and Zmt (0.13 ± 0.01) was significantly lower than on Tp (0.21 ± 0.05) and Z14 (0.20 ± 0.04) (p < .05). In situ biofilm formation was significantly higher on Z14 (0.56 ± 0.45) (p < .05), while no significant differences in optical density were observed among Zp (0.25 ± 0.20), Zm (0.36 ± 0.34) and Tp (0.28 ± 0.22). SEM analysis supported quantitative findings. CONCLUSIONS: In the in vitro, three-species biofilm model differences in material and surface roughness affected biofilm formation. In situ biofilm formation was mainly affected by the surface roughness of the specimens. Polishing of zirconia is recommended to reduce biofilm formation, while heat treatment has no significant effect.


Assuntos
Implantes Dentários , Biofilmes , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Titânio , Zircônio
7.
J Mater Sci Mater Med ; 33(8): 61, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35849225

RESUMO

Bone graft materials are applied in patients to augment bone defects and enable the insertion of an implant in its ideal position. However, the currently available augmentation materials do not meet the requirements of being completely resorbed and replaced by new bone within 3 to 6 months. A novel electrospun cotton-wool like material (Bonewool®, Zurich Biomaterials LLC, Zurich, Switzerland) consisting of biodegradable poly(lactic-co-glycolic) acid (PLGA) fibers with incorporated amorphous ß-tricalcium phosphate (ß-TCP) nanoparticles has been compared to a frequently used bovine derived hydroxyapatite (Bio-Oss®, Geistlich Pharma, Wolhusen, Switzerland) in vitro. The material composition was determined and the degradation behavior (calcium release and pH in different solutions) as well as bioactivity has been measured. Degradation behavior of PLGA/ß-TCP was generally more progressive than for Bio-Oss®, indicating that this material is potentially completely resorbable. Graphical abstract.


Assuntos
Substitutos Ósseos , Fosfatos de Cálcio , Animais , Materiais Biocompatíveis/química , Fosfatos de Cálcio/química , Bovinos , Humanos
8.
J Esthet Restor Dent ; 34(5): 833-842, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35305288

RESUMO

OBJECTIVE: The purpose of this study is to compare the bonding performance and mechanical properties of two different resin composite cements using simplified adhesive bonding strategies. MATERIALS AND METHODS: Shear bond strength of two resin composite cements (an adhesive cement: Panavia V5 [PV5] and a self-adhesive cement: RelyX Universal [RUV]) to human enamel, dentin, and a variety of restorative materials (microfilled composite, composite, polymer-infiltrated ceramic, feldspar ceramic, lithium disilicate and zirconia) was measured. Thermocycle aging was performed with selected material combinations. RESULTS: For both cements, the highest shear bond strength to dentin was achieved when using a primer (PV5: 18.0 ± 4.2 MPa, RUV: 18.2 ± 3.3 MPa). Additional etching of dentin reduced bond strength for RUV (12.5 ± 4.9 MPa). On enamel, PV5 achieved the highest bond strength when the primer was used (18.0 ± 3.1 MPa), while for RUV etching of enamel and priming provided best results (21.2 ± 6.6 MPa). Shear bond strength of RUV to restorative materials was superior to PV5. Bonding to resin-based materials was predominantly observed for RUV. CONCLUSIONS: While use of RUV with the selective-etch technique is slightly more labor intensive than PV5, RUV (with its universal primer) displayed a high-bonding potential to all tested restorative materials, especially to resin. CLINICAL SIGNIFICANCE: For a strong adhesion to the tooth substrate, PV5 (with its tooth primer) is to be preferred because etching with phosphoric acid is not required. However, when using a wide range of varying restorative materials, RUV with its universal primer seems to be an adequate option.


Assuntos
Colagem Dentária , Cerâmica , Colagem Dentária/métodos , Cimentos Dentários , Materiais Dentários , Análise do Estresse Dentário , Humanos , Teste de Materiais , Cimentos de Resina/química , Resistência ao Cisalhamento , Propriedades de Superfície
9.
J Prosthet Dent ; 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36153187

RESUMO

STATEMENT OF PROBLEM: The high strength of zirconia makes the removal of zirconia restorations challenging and time consuming. Whether diamond rotary instruments marketed for removing zirconia restorations are more efficient is unclear. PURPOSE: The purpose of this in vitro study was to compare the efficiency of diamond rotary instruments specifically marketed to cut zirconia with the efficiency of a conventional diamond rotary instrument. MATERIAL AND METHODS: Two diamond rotary instruments marketed to cut zirconia (JOTA Zirkon Cut Z838L [JOT] and Intensiv ZirconCut Zr02/10 [IZC]) and a conventional diamond rotary instrument (Intensiv FG 334/6 [IFG]) were tested on 2 zirconia materials: 3Y-TZP (IPS ZirCAD LT) and a multilayered 4Y-TZP (IPS ZirCAD MT Multi). Zirconia specimens (2 mm) were cut under water cooling using a force of 2 N or 6 N. Cutting times and maximum temperatures at the tip of the diamond rotary instruments were recorded. The surface roughness before and after use was measured, and the elemental composition was analyzed. RESULTS: Overall, cutting times were shorter for IFG (85 seconds) and IZC (100 seconds) than for the JOT (182 seconds). Cutting times were shorter for MT zirconia than for LT zirconia. Higher temperatures (2 N: 24.6 °C, 6 N: 36.7 °C) and lower surface roughness occurred with higher cutting loads. Impurities of diamond particles were seen for JOT. The diamond particle embedding materials were either nickel alloys (IFG and JOT) or a resin material (IZC). CONCLUSIONS: Diamond rotary instruments marketed for cutting zirconia did not perform better or generate less heat compared with a conventional diamond rotary instrument. A load of 2 N with sufficient water cooling is recommended for cutting zirconia to avoid an extensive temperature increase.

10.
J Prosthet Dent ; 124(6): 780-786, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31955837

RESUMO

STATEMENT OF PROBLEM: Comparisons of the material qualities of pressed, milled, and 3D-printed occlusal devices are sparse, complicating informed decisions on material choice. PURPOSE: The purpose of this in vitro study was to compare the material properties of pressed, milled, and 3D-printed resins, as well as how these are affected by thermal aging. These data were then used to estimate the likely clinical performance of the tested materials. MATERIAL AND METHODS: Three pressed (ProBase Cold; Ivoclar Vivadent AG, Palapress clear; Kulzer GmbH, Aesthetic Blue clear; Candulor), 3 milled (Temp Premium Flexible Transpa; Zirkonzahn, idodentine PMMA transparent; Unión Dental S.A., Yamahachi PMMA clear; Yamahachi Dental MFG), and three 3D-printed (Freeprint splint; DETAX GmbH, LuxaPrint Ortho Plus; DMG GmbH, Nextdent Ortho Clear; Vertex-Dental B.V.) resin materials were evaluated. Flexural strength, Martens hardness (HM), Vickers hardness (HV), water sorption, water solubility, and surface topography were analyzed. The tests were carried out after 50 hours of water storage at 37 °C (baseline) and after simulated aging (50 hours of water storage at 37 °C, followed by 20 000 thermocycles [TC] at 5 °C and 55 °C). RESULTS: At baseline, the mean flexural strength values were 92.8 to 99.5 MPa for pressed, 95.1 to 122.0 MPa for milled, and 19.5 to 91.3 MPa for 3D-printed materials. After aging, these values were 87.6 to 93.5 MPa for pressed, 93.1 to 116.0 MPa for milled, and 13.0 to 63.3 MPa for 3D-printed resins. The mean HM values were 130.1 to 134.1 N/mm for pressed and 130.3 to 158.5 N/mm for milled resins. After aging, the mean HM ranged from 121.6 to 124.2 N/mm for pressed and 116.2 to 149.7 N/mm for milled resins. The mean HV values were 18.2 to 19.9 for pressed and 18.4 to 23.0 for milled resins before aging and 16.9 to 18.7 for pressed and 17.3 to 22.3 N/mm for milled resins after aging. Printed resins could not be measured. At baseline, the mean modulus of elasticity ranged from 4.6 to 4.8 GPa for pressed and from 4.7 to 5.3 GPa for milled resins. For 3D-printed resins, only 1 material could be measured (3.7 GPa). The mean sorption values were 8.6 to 9.2 µg/mm3 for pressed, 7.9 to 10.5 µg/mm3 for milled, and 9.2 to 21.2 µg/mm3 for additive resins. After aging, these values were 21.1 to 22.6 µg/mm3 for pressed, 20.5 to 23.7 µg/mm3 for milled, and 19.4 to 45.5 µg/mm3 for 3D-printed resins. The mean solubility values ranged from 0.3 to 1.4 µg/mm3 for pressed, 0.4 to 1.7 µg/mm3 for milled, and -3.5 to 11 µg/mm3 for 3D-printed materials. CONCLUSIONS: Pressed and milled resins can be considered equivalent in terms of their material properties. Relative to the pressed and milled resins, the 3D-printed resins had lower flexural strength and hardness values and higher water sorption and solubility.


Assuntos
Resinas Compostas , Estética Dentária , Materiais Dentários , Resistência à Flexão , Dureza , Teste de Materiais , Impressão Tridimensional , Estresse Mecânico , Propriedades de Superfície
11.
Clin Oral Implants Res ; 30(2): 178-186, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30629769

RESUMO

OBJECTIVE: This study evaluated the loading capacity of CAD/CAM-fabricated anterior feldspathic ceramic crowns bonded to one-piece zirconia implants with different cements. MATERIAL AND METHODS: Fifty one-piece zirconia implants were embedded in epoxy resin. The abutment aspect of one implant was optically scanned and a standardized upper canine was designed with CAD-software. Fifty feldspathic ceramic crowns were milled, polished, and mounted on the implants either without any cement, with a temporary cement or with three different composite resin cements after surface pretreatment as recommended by the manufacturers (n = 10). After storage in distilled water at 37°C for 24 hr, specimens were loaded until fracture on the palatal surface of the crown at an angle of 45° to the long axis of the implant and loads until fracture were detected and compared. Compressive strength of the investigated cement materials was determined. Statistical analyses were done with One-way ANOVA followed by post hoc Fisher LSD test (α = 0.05). RESULTS: The cements revealed significantly different compressive strength values (temporary cement: 37.1 ± 7.0 MPa; composite resin cements: 185.8 ± 21.3, 277.9 ± 22.1, and 389.0 ± 13.6 MPa, respectively). Load-at-fracture values had an overall mean value of 237.1 ± 58.2 N with no significant difference among the composite resin cements (p > 0.05). Fracture load values with the temporary cement or without cement were significantly lower (p < 0.002). CONCLUSIONS: CAD/CAM-fabricated anterior feldspathic ceramic crowns bonded to one-piece zirconia implants provide sufficient resistance to intraoral forces.


Assuntos
Silicatos de Alumínio , Coronantes , Cimentos Dentários , Compostos de Potássio , Próteses e Implantes , Zircônio , Cerâmica , Colagem Dentária , Suporte de Carga
12.
Clin Oral Implants Res ; 29(1): 82-90, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29044723

RESUMO

OBJECTIVES: The purpose of this study was to analyze the cement excess produced when cementing CAD/CAM-fabricated lithium disilicate (L) or zirconium dioxide (Z) crowns using adhesive cement (A) or resin-modified glass ionomer cement (B). Three different cementation techniques were applied: palatal venting (PV), pre-cementation with custom analogs (CA), and conventional standard procedure (SP). MATERIALS AND METHODS: Seventy-two crowns (36 each material) were assigned to 12 experimental groups depending on the restoration material (L, Z), type of cement (A, B), and cementation technique (PV, CA, SP). Weight measurements were taken during cementation, and the amounts of excess cement, cement retained in crown, and relative excess cement were calculated and statistically analyzed. RESULTS: A significant direct relation between the amounts of cement applied and excess cement was observed in groups CA and SP. Vented crowns showed least amounts of marginal excess cement (0.8 ± 0.3 µl) followed by CA (4.2 ± 1.1 µl) and SP (8.8 ± 2.5 µl; p < .001). In CA, 32.1% less excess cement (95%CI: 28.4, 35.7) was produced than in the SP group (p < .001), but 27.4% more than in the PV group (95%CI: 23.8,31.0; p < .001). Overall, slightly smaller amounts of adhesive cement (A) than of glass ionomer cement (B) were retained in crowns. CONCLUSIONS: Using crown venting was the most effective measure to reduce the amount of marginal excess cement, followed using a pre-cementation device. To keep the marginal excess cement of one-piece zirconia implants to a minimum, both techniques should be considered for clinical application.


Assuntos
Cimentação/métodos , Cerâmica , Coroas , Cimentos Dentários , Implantes Dentários , Desenho Assistido por Computador , Porcelana Dentária , Planejamento de Prótese Dentária , Cimentos de Ionômeros de Vidro , Humanos , Técnicas In Vitro , Teste de Materiais , Zircônio
13.
Clin Oral Implants Res ; 29(2): 175-184, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29090511

RESUMO

OBJECTIVES: To investigate the fracture behavior and marginal gap region of CAD/CAM fabricated lithium disilicate (L) and zirconium dioxide (Z) crowns using palatal venting (PV), pre-cementation with custom analogs (CA), or conventional cementation technique (SP) with adhesive cement (A) or resin-modified glass ionomer cement (B). MATERIAL AND METHODS: Twelve groups (n = 6) were set according to material (L, Z), cement (A, B), and technique (PV, CA, SP). Specimens were thermo-mechanical aged (TML), loaded until fracture (LF) and fracture patterns recorded. Marginal gap width and quality were assessed and compared to replicas obtained before and after TML. RESULTS: Crown material significantly influenced LF with a mean of 1037.6 ± 282.4 N in L and 5356.3 ± 1207.0 N in Z groups (p < .001). Neither cement material nor cementation method affected the outcome. Fractures occurred along the mesial-distal central fissure in both materials. Gap width before TML was 22.04 ± 13.42 µm for L and 19.98 ± 12.72 µm for Z specimens, with overall no influence of crown material, cement type, or method. Marginal cleanliness just below the polished implant shoulder reached 66.7%-88.9% with A, and 91.7%-100% with B, and tended to increase in all groups during TML indicating a decrease in excess cement. Implant-crown junctions were cleaner with B compared to A (p ≤ .001) and along Z crown surfaces compared to L (p ≤ .007). CONCLUSIONS: Crown venting of lithium disilicate and zirconium dioxide crowns did not affect the fracture load and patterns. Complete cement removal was rare, and the observed particle ablation requires further clinical attention, particularly with submucosal margins.


Assuntos
Cerâmica , Desenho Assistido por Computador , Coroas , Planejamento de Prótese Dentária , Ítrio , Zircônio , Cimentos Dentários/uso terapêutico , Adaptação Marginal Dentária , Planejamento de Prótese Dentária/métodos , Falha de Restauração Dentária , Análise do Estresse Dentário
14.
J Prosthet Dent ; 119(1): 138-145, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28461047

RESUMO

STATEMENT OF PROBLEM: The best procedure for cementing a restoration to zirconia implants has not yet been established. PURPOSE: The purpose of this in vitro study was to measure the retention of polymer-infiltrated ceramic crowns to zirconia 1-piece implants using a wide range of cements. The effect of ceramic primer treatment on the retention force was also recorded. The retention results were correlated with the shear bond strength of the cement to zirconia and the indirect tensile strength of the cements to better understand the retention mechanism. MATERIAL AND METHODS: The retention test was performed using 100 polymer-infiltrated ceramic crowns (Vita Enamic) and zirconia implants (ceramic.implant CI) The crowns were cemented with either interim cement (Harvard Implant semipermanent, Temp Bond), glass-ionomer cement (Ketac Cem), self-adhesive cement (Perma Cem 2.0, RelyX Unicem Automix 2, Panavia SA), or adhesive cement (Multilink Implant, Multilink Automix, Vita Adiva F-Cem, RelyX Ultimate, Panavia F 2.0, Panavia V5 or Panavia 21) (n=5). Additionally ceramic primer was applied on the intaglio crown surface and implant abutment before cementation for all adhesive cements (Multilink Implant, Multilink Automix: Monobond plus; RelyX Ultimate Scotchbond Universal; Vita Adiva F-Cem: Vita Adiva Zr-Prime; Panavia F2.0, Panavia V5: Clearfil Ceramic Primer) and 1 self-adhesive cement containing 10-methacryloyloxydecyl dihydrogen phosphate (MDP) (Panavia SA: Clearfil Ceramic Primer). Crown debond fracture patterns were recorded. Shear bond strength was determined for the respective cement groups to polished zirconia (n=6). The diametral tensile strength of the cements was measured (n=10). Statistical analysis was performed using 1-way or 2-way analysis of variance followed by the Fisher LSD test (α=.05) within each test parameter. RESULTS: Adhesive and self-adhesive resin cements had shear bond strength values of 0.0 to 5.3 MPa and revealed similar retention forces. Cements containing MDP demonstrated shear bond strength values above 5.3 MPa and displayed increased retention. The highest retention values were recorded for Panavia F 2.0 (318 ±28 N) and Panavia 21 (605 ±82 N). All other adhesive and self-adhesive resin cements attained retention values between 222 ±16 N (Multilink Automix) and 270 ±26 N (Panavia SA), which were significantly higher (P<.05) than glass-ionomer (Ketac Cem: 196 ±34 N) or interim cement (Harvard Implant semipermanent: 43 ±6 N, Temp Bond: 127 ±13 N). Application of manufacturer-specific ceramic primer increased crown retention significantly only for Panavia SA. CONCLUSIONS: Products containing MDP provided a high chemical bond to zirconia. Self-adhesive and adhesive resin cements with low chemical bonding capabilities to zirconia provided retention force values within a small range (220 to 290 N).


Assuntos
Cerâmica , Coroas , Cimentos Dentários , Implantes Dentários , Materiais Dentários , Retenção em Prótese Dentária , Polímeros , Zircônio , Planejamento de Prótese Dentária
15.
Eur J Oral Sci ; 125(2): 141-150, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28224754

RESUMO

The aim of this study was to evaluate the water sorption and solubility test design of ISO 4049 for resin cements. Sorption and solubility of six dual-curing resin cements [RelyX Unicem 2 Automix (RUN), Multilink Speed CEM (MLS), Panavia SA Plus (PSA), RelyX Ultimate (RUL), Multilink Automix (MLA), and Panavia V5 (PV5)] were analyzed by storage in distilled water after dual-curing. In addition, sorption and solubility during thermal cycling were assessed with self-cured and dual-cured specimens. After water storage, all cements revealed sorption in the range of 30 µg mm-3 except for PV5, for which sorption was markedly lower (mean ± SD = 20.8 ± 0.4 µg mm-3 ). Solubility values were negative for RUN and RUL (-2.1 ± 0.08 µg mm-3 and -1.9 ± 0.13 µg mm-3 , respectively). All other cements attained positive values in the range of 0.4-0.8 µg mm-3 . Thermal cycling effects were more pronounced. The assessment of water sorption according to ISO 4049 provides reliable results. Solubility results must be interpreted with care because absorbed water may distort the values.


Assuntos
Materiais Dentários/química , Materiais Dentários/normas , Cimentos de Resina/química , Cimentos de Resina/normas , Teste de Materiais , Solubilidade , Água
16.
Eur J Oral Sci ; 125(4): 294-302, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28618020

RESUMO

So-called secondary caries may develop in the cement gap between the tooth and the bonded restoration. Cement materials with a low susceptibility to biofilm formation are therefore desirable. In the present study, the adhesion of Strepococcus mutans onto three adhesive (Multilink Automix, RelyX Ultimate, and Panavia V5) and three self-adhesive (Multilink Speed Cem, RelyX Unicem 2 Automix, and Panavia SA plus) resin composite cements was evaluated. Previous studies have failed to evaluate concomitantly the effect of both the composition of the cements and their surface roughness on biofilm formation. The presence of S. mutans on cement surfaces with differing degrees of roughness was therefore recorded using fluorescence microscopy and crystal violet staining, and the composition of the cements was analyzed using energy-dispersive X-ray spectroscopy mapping. Biofilm formation on resin composite cements was found to be higher on rougher surfaces, implying that adequate polishing of the cement gap is essential. The use of copper-containing cements (Multilink Automix, Panavia V5, and Panavia SA plus) significantly reduced biofilm formation.


Assuntos
Aderência Bacteriana , Resinas Compostas/química , Cimentos Dentários/química , Biofilmes , Teste de Materiais , Microscopia de Fluorescência , Cimentos de Resina , Espectrometria por Raios X , Streptococcus mutans , Propriedades de Superfície
17.
J Adhes Dent ; 19(5): 417-424, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29152620

RESUMO

PURPOSE: To investigate the effect of a universal adhesive on the bond strength of composite cements to a polymer-infiltrated ceramic network. MATERIALS AND METHODS: Shear bond strength to a polymer-infiltrated ceramic network (Vita Enamic) and to its polymer and ceramic components was assessed on polished surfaces using either a conventional dual-curing resin (RelyX Ultimate) or self-adhesive composite cement (RelyX Unicem 2 Automix). Substrate surfaces were either not pretreated or a silane coupling agent (Vitasil), a universal adhesive (Scotchbond Universal Adhesive), or both were applied. Further, the shear bond strength to polymer-infiltrated ceramic network was evaluated after etching with 5% hydrofluoric acid (Vita Ceramics Etch) of 0, 15, 30, 60 or 120 s without or with application of silane, universal adhesive, or both (n = 10). Statistical analysis was performed using the Kruskal-Wallis test (p < 0.05) followed by post-hoc comparisons with Bonferroni correction. RESULTS: No bond (0 MPa) was formed to the polished polymer-infiltrated ceramic network or to its components for either cement. Application of silane resulted in low mean bond strengths (4 to 5 MPa) to the ceramic. The universal adhesive bonded mainly to the polymer part of the polymer-infiltrated ceramic network. The best bonding performance for both cements was achieved when silane and universal adhesive were applied on the polymer-infiltrated ceramic network. Etching for 30 s or 60 s resulted in the highest mean shear bond strengths for all pretreatment groups (p < 0.05). CONCLUSION: The best bonding performance of the self-adhesive dual-curing composite cement RelyX Unicem 2 Automix was found on the HF-etched polymer-infiltrated ceramic network. The conventional dual-curing composite cement RelyX Ultimate with Scotchbond Universal Adhesive may bond chemically to the polymer part of the polymer-infiltrated ceramic network. To achieve the highest bond strengths for both cements, the polymer-infiltrated ceramic network should be etched for 30 to 60 s, followed by the application of silane and universal adhesive.


Assuntos
Condicionamento Ácido do Dente , Colagem Dentária , Cerâmica , Cimentos Dentários , Teste de Materiais , Polímeros , Cimentos de Resina , Resistência ao Cisalhamento , Silanos , Propriedades de Superfície
18.
Dent Mater ; 40(6): 897-906, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702210

RESUMO

OBJECTIVES: To determine whether water sorption and solubility of a recently introduced self-adhesive cement is comparable to two clinically tested resin composite cements after thermal aging, and if this is affected by the curing mode. Whether water sorption is correlated with color difference and biaxial flexural strength was also investigated. METHODS: Water sorption and solubility of three resin composite cements {RelyX Universal (RUV), (Panavia V5 (PV5), Panavia SA plus (PSA)} were measured after thermal aging. Disk-shaped specimens were either light-cured or autopolymerized (n = 15 per group). Color difference ΔE00 and biaxial flexural strength were also obtained. RESULTS: Sorption was highest for RUV (auto: 54.9 ± 9.0 µg/mm3, light: 49.7 ± 4.9 µg/mm3), followed by PSA (auto: 37.7 ± 1.4 µg/mm3, light: 34.5 ± 1.1 µg/mm3) and PV5 (auto: 21.7 ± 0.7 µg/mm3, light: 22.1 ± 0.4 µg/mm3). Light-curing reduced solubility values, particularly for RUV (from 60.7 ± 20.8 µg/mm3 to 6.4 ± 0.8 µg/mm3). Color differences of ΔE00 > 1.8 (considered clinically not acceptable) were noted after aging for RUV and PSA. Sorption and ΔE00 values after aging were correlated linearly (R2 = 0.970). Biaxial flexural strength values were highest for PV5 (light: 153.4 ± 15.9 MPa; auto: 133.2 ± 18.0 MPa) and lowest for RUV (light: 99.3 ± 12.8 MPa; auto: 35.1 ± 8.3 MPa). SIGNIFICANCE: Light-curing has beneficial effects on sorption, color stability, and biaxial flexural strength of resin composite cements. Cements containing 2-hydroxymethacrylate such as RUV and PSA are more prone to water sorption and color changes.


Assuntos
Cor , Resistência à Flexão , Teste de Materiais , Cimentos de Resina , Solubilidade , Água , Água/química , Cimentos de Resina/química , Resinas Compostas/química , Cura Luminosa de Adesivos Dentários
19.
Materials (Basel) ; 16(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36836985

RESUMO

The aim of this study was to find a suitable material combination to avoid cement excess in the marginal region of one-piece zirconia implant-supported restorations by means of a hybrid crown consisting of a meso- and a suprastructure. One-piece zirconia implants (n = 120) were embedded in epoxy resin. Microfilled resin composite mesostructures (n = 60), designed as caps, were bonded on the implant abutment with a primer only. A molar crown was constructed and cemented with a resin cement on top of the mesostructure as a suprastructure out of feldspar ceramic (n = 12), lithium-disilicate (n = 24), or zirconia (n = 24). Fracture load (n = 6) and retention force (n = 6) were measured immediately after storage in distilled water at 37 °C for 24 h, as well as after an additional exposure to artificial aging in a chewing simulator and simultaneous thermal cycling. For the measurement of the fracture load, monolithic crowns made of the employed restorative materials and identical in shape to the hybrid crowns served as controls (n = 6 each). Fracture load values for feldspar ceramic and lithium-disilicate hybrid crowns were slightly higher than those for the respective monolithic crowns at baseline and after aging, which was statistically significant only for feldspar crowns after aging. In contrast, fracture load values for zirconia monolithic crowns were higher than those for zirconia hybrid crowns, which was only statistically significant after aging. Artificial aging reduced the fracture load of feldspar and lithium-disilicate crowns both for hybrid and monolithic crowns. The effect was only statistically significant for lithium disilicate hybrid crowns. The fracture load for hybrid and monolithic zirconia crowns was increased by artificial aging without reaching statistical significance. The retention force of lithium-disilicate and zirconia hybrid crowns was not affected by artificial aging. Taking into account retention force and fracture load, lithium-disilicate hybrid crowns showed promising results.

20.
Materials (Basel) ; 16(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36769917

RESUMO

The aim was to investigate how the surface treatment and the process of accelerated ageing of zirconia for dental implants affect the biaxial flexural strength and hardness. Zirconia discs with a diameter of 12.6 mm were subjected to either one of the following treatments: polishing (Zp); polishing and heat treatment at 1250 °C for 1 h (Zpt); machining (Zm); machining and heat treatment (Zmt); or sandblasting, acid-etching, and heat treatment (Z14) (n = 45 per group). Biaxial flexural strength and Martens hardness (HM) were measured without further treatment and after accelerated ageing for 5 h or 5 × 5 h according to ISO 13356 (n = 15 per group). Two-way ANOVA was applied to test the effect of surface treatment and ageing (α = 0.05). The reliability of the specimens was described with Weibull two-parameter distribution of biaxial flexural strength data. Overall, the surface treatment (p < 0.001) and ageing (p = 0.012) revealed a significant effect on biaxial flexural strength values, while HM was only affected by the surface treatment (p < 0.001) but not ageing (p = 0.160). Surface treatment significantly affected HM (p < 0.001) but not ageing (p = 0.160). The applied surface treatments affected the biaxial flexural strength and HM of zirconia. For accelerated ageing, a duration of both 5 h and 5 × 5 h is recommended to evaluate the effect of surface treatments. Zm was the most reliable surface as it was least affected by ageing and provided low standard deviations of biaxial flexural strength values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA