Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 106(22): 225501, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21702612

RESUMO

We compare the atomic dynamics of the glass to that of the relevant crystal. In the spectra of inelastic scattering, the boson peak of the glass appears higher than the transverse acoustic (TA) singularity of the crystal. However, the density of states shows that they have the same number of states. Increasing pressure causes the transformation of the boson peak of the glass towards the TA singularity of the crystal. Once corrected for the difference in the elastic medium, the boson peak matches the TA singularity in energy and height. This suggests the identical nature of the two features.

2.
J Phys Condens Matter ; 23(4): 045702, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21406894

RESUMO

The structurally ordered µ-Al(4)Mn complex intermetallic phase with 563 atoms in the giant unit cell shows the typical broken-ergodicity phenomena of a magnetically frustrated spin system. The low-field zero-field-cooled and field-cooled magnetic susceptibilities show splitting below the spin freezing temperature T(f) = 2.7 K. The ac susceptibility exhibits a frequency-dependent cusp, associated with a frequency-dependent freezing temperature T(f)(ν). The decay of the thermoremnant magnetization is logarithmically slow in time and shows a dependence on the aging time t(w) and the cooling field H(fc) typical of an ultraslow out-of-equilibrium dynamics of a nonergodic spin system that approaches thermal equilibrium, but can never reach it on the experimentally accessible time scale. The above features classify the µ-Al(4)Mn complex intermettalic among spin glasses. The origin of frustration of magnetic interactions was found to be geometrical due to the distribution of a significant fraction of Mn spins on triangles with antiferromagnetic coupling. The µ-Al(4)Mn phase is a geometrically frustrated spin glass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA