Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Drug Metab Pharmacokinet ; 39(4): 311-20, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24346850

RESUMO

The effect of silymarin (SMN) on the pharmacokinetics of atorvastatin in diabetic rats was evaluated. Male Wistar rats were assigned into two major groups and then sub-grouped according to the purposes of the study. The first major group was subdivided into three groups (n = 6) including control, non-treated diabetic and SMN-treated diabetic animals. In the first major group, metabolism of testosterone by the hepatic microsomes was studied. The second major group also was divided to three groups including atorvastatin-treated non-diabetic, atorvastatin-treated diabetic and diabetic animals which received both atorvastatin and SMN. To study the pharmacokinetics of atorvastatin, serum samples were collected at 0, 3, 6, 12 and 24 h after the atorvastatin administration. Pharmacokinetic parameters were calculated using non-compartmental model. Streptozotocin-induced diabetes resulted in a remarkable induction of testosterone hydroxylation as the V max for 6ß-hydroxytestosterone production in the diabetic rats (77.3 ± 8.6 pM/min/mg) was significantly higher than that in the control animals (45.9 ± 5.9 pM/min/mg). Moreover, SMN-treated animals showed a significant (P < 0.05) reduction of V max (59.4 ± 6.1 pM/min/mg). Diabetes resulted in a significant reduction of AUC (control 6.98 ± 0.58 vs diabetic rats 4.35 ± 0.24 h mg/ml) and C max values (control 0.52 ± 0.03 vs diabetic group 0.33 ± 0.01 µg/ml), while the SMN-received group showed remarkable recovery of diabetes-reduced values of AUC and C max. These findings indicated that diabetes resulted in a significant up-regulation of microsomal enzyme activities. Moreover, as SMN could significantly regulate the enzyme activities and consequently the atorvastatin pharmacokinetics in diabetic rats, its regulative effect in a combination therapy is concluded.


Assuntos
Ácidos Heptanoicos/farmacocinética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Pirróis/farmacocinética , Silimarina/farmacologia , Animais , Atorvastatina , Citocromo P-450 CYP3A/fisiologia , Diabetes Mellitus Experimental/metabolismo , Interações Medicamentosas , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar , Estreptozocina , Testosterona/metabolismo
2.
Iran J Pharm Res ; 15(3): 493-500, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27980584

RESUMO

This study aimed to investigate the potency of silymarin (SMN) and melatonin (MEL) on restoring the pancreatic   cells in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were divided into five groups, including: control (C), untreated diabetic (D), SMN-treated diabetic (50 mg/Kg, orally), MEL-treated diabetic (10 mg/Kg, i.p.), and SMN plus MEL-treated diabetic rats. Diabetes was induced by injection of STZ (50 mg/Kg, i.p.). The blood glucose and insulin levels were measured. After the 28 days treatment period, antioxidant status was analyzed by determination of total antioxidant capacity (TAC) in the liver and serum. The histopathological changes in the pancreatic islets were examined by histochemical staining and enumeration of   cells. Although none of the test compounds reduced the blood glucose level to normal concentration, however SMN alone and in combination with MEL was able to decline it significantly (P<0.05) after 28 days administration. Both SMN and MEL could recover the diabetes-reduced TAC values. Moreover, the diabetes-induced cellular vacuolation and   cells depletion were improved by the SMN treatment. Our data suggest that the SMN and MEL treatment was able to normalize the antioxidant status, while only SMN administration could restore the  cells of Langerhans islets in diabetic rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA