RESUMO
In the quest for powerful, safe, and storable photoinduced-electron transfer (PET) donors, the attention is turned to the α-trihalomethylated amine moiety that is not studied in the context of PET-reductants. The thermal and photophysical properties of α-trifluoromethylated quinolines are thus studied and their reducing abilities evaluated as initiators of polymerization reactions. Polymers of high molecular weights are obtained through a radical polymerization process and the PET-donor can be stored within the monomer for several months without losing its efficiency. Mechanistic investigations, combining spectroscopic analysis and theoretical calculations, confirm the mode of activation of these electron donors and the generation of radical intermediates through single electron transfer.
RESUMO
Although most monomers can polymerize through different propagation pathways, polymerization-initiating systems that can switch from one mode to another are rare. In this study, we demonstrate that enamine-based organic electron donors (OEDs) constitute the first systems able to initiate either free-radical or anionic polymerization under simple, mild, and safe conditions. While direct electron-transfer reduction of monomers by OEDs results in the initiation of anionic chain-growth polymerization, introduction of a competing oxidant with a higher reduction potential than the monomer switches the former anionic propagation to a clean radical-propagation process. The benefit of this dual-mode activator is highlighted in the synthesis of an interpenetrating polymer network through simultaneous initiation of radical and anionic propagation processes.
RESUMO
A catalyst/initiator-free radical addition reaction performed under mild conditions (water, 30 °C) with high yields is reported for the first time. This reaction implies simple pH-mediated alkoxyamine dissociation followed by addition onto olefinic substrates. The versatility and relevance of this selective reaction for macromolecular conjugation and engineering are shown through the syntheses of block copolymers, as well as hydrogels containing inâ situ-loaded proteins, which could retain biological activity. This contrasts with standard thermal radical conditions that lead to complete protein inactivation.
Assuntos
Hidrogéis/química , Substâncias Macromoleculares/química , Alcenos/química , Catálise , Radicais Livres/química , Polímeros/química , ÁguaRESUMO
RATIONALE: The goal of this work was to modify the dissociation pathways of polylactide (PLA) holding benzyl and hydroxyl terminations, in order to circumvent coincidence of product ions generated during collisional activation of sodiated chains, which prevented their reliable characterization. METHODS: Benzyl-, hydroxyl-terminated PLAs were ionized as ammonium adducts in positive ion mode electrospray and subjected to collision-induced dissociation (CID). Tandem mass spectrometry (MS/MS) experiments were conducted in a quadrupole time-of-flight (QTOF) instrument for safe assignment of product ions based on their elemental composition derived from accurate mass measurements. RESULTS: Adduction of ammonium to PLAs was found to induce chain fragmentation via charge-assisted processes, in great contrast to the charge-remote mechanisms experienced by sodiated molecules. The main reaction produced ions containing the ω termination only, hence allowing straightforward end-group determination. Other minor pathways were studied in detail to establish dissociation rules for ammoniated PLAs. Some reactions were found to be end-group specific, highlighting the higher reactivity of ammonium than alkali ion adducts. CONCLUSIONS: Changing the usually employed sodium-cationizing agent to ammonium was shown to induce dramatic changes in the CID behavior of PLAs. This was a simple and efficient approach to address issues encountered for end-group analysis of the particular PLA studied here.
RESUMO
Polymerization reactions with organic electron donors (OED) as initiators are presented herein. The metal-free polymerization of various activated alkene and cyclic ester monomers was performed in short reaction times, under mild conditions, with small amounts of organic reducing agents, and without the need for co-initiators or activation by photochemical, electrochemical, or other methods. Hence, OED initiators enabled the development of an efficient, rapid, room-temperature process that meets the technical standards expected for industrial processes, such as energy savings, cost-effectiveness and safety. Mechanistic investigations support an electron-transfer initiation pathway that leads to the reduction of the monomer.
RESUMO
Separation of parent homopolymers, polystyrene and poly(ethylene oxide), from the triblock copolymer polystyrene-b-poly(ethylene oxide)-b-polystyrene was investigated by means of liquid chromatography techniques. Overall suitability was evaluated and compared for size exclusion chromatography, (SEC), liquid chromatography under critical conditions of enthalpic interactions (LC CC), and liquid chromatography under limiting conditions of desorption (LC LCD). Among these techniques, LC LCD was the only one able to fully separate block copolymers from both their parent homopolymers in one single run. The efficiency of the separation was proven by (1)H NMR analysis of previously collected fractions.
RESUMO
Cleavage of the labile halide termination upon matrix-assisted laser desorption/ionization (MALDI) has always been reported as a major concern in mass analysis of polystyrene prepared by atom transfer radical polymerization (ATRP). By studying this issue using nuclear magnetic resonance (NMR) and electrospray ionization-mass spectrometry, we evidence here that the ionization step is not involved in this deleterious process. Instead, removal of the halogen was shown to readily occur upon interaction of the silver salt (AgTFA) used as the cationizing agent in mass spectrometry, either in solution or in the solid-state when performing solvent-free sample preparation. In solution, this silver-induced reaction mostly consists of a nucleophilic substitution, leading to polystyrene molecules holding different terminations, depending on relative nucleophilicity of species present in the liquid-phase solution composition. In chloroform supplemented with AgTFA, trifluoroacetate-terminated PS were evidenced in ESI-MS spectra but experienced end-group cleavage in MALDI. In contrast, the major methoxy-terminated PS macromolecules formed when the silver-catalyzed nucleophilic substitution was performed in methanol were generated as intact gas-phase ions using both ionization techniques. This controlled and fast modification could hence be advantageously used as a rapid sample pretreatment for safe MALDI mass analysis of ATRP-made polystyrene.
RESUMO
Well-defined phosphonate-functionalized polycarbonate with low dispersity (Ð = 1.22) was synthesized using organocatalyzed ring-opening polymerization (ROP) of novel phosphonate-based cyclic monomers. Copolymerization was also performed to access different structures of phosphonate-containing polycarbonates (PC). Furthermore, phosphonate-functionalized PC was successfully synthesized using a combination of ROP and post-modification reaction.
RESUMO
An analytical methodology with mass spectrometry as the core technique was developed for precise characterization of end groups, size, and co-monomeric composition of poly(lactic-co-glycolic acid) (PLGA) copolymers, as a preliminary step to qualify their biodegradability. Four PLGA samples were studied, with GA molar content varying from 0 to 50% and Mw ranging from 18 to 75 kg mol-1 according to the supplier. Size exclusion chromatography (SEC) and liquid state nuclear magnetic resonance (NMR) were used as either complementary or validation techniques. As confirmed by tandem mass spectrometry (MS/MS) experiments, macrocycles were most prominent in the low mass range. Nevertheless, elemental compositions derived from high resolution (HR) mass measurements of linear species were consistent with chain terminations revealed by NMR. Off-line coupling of SEC with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) permitted calibration curves to be built based on absolute molecular weights and, although slightly overestimated, so-obtained Mn and Mw values compared well with SEC and NMR results. Homogeneity of the co-monomeric content of all chains within each PLGA sample was demonstrated using surface-assisted laser desorption/ionization in a reactive mode (reactive-SALDI), a newly developed technique that takes advantage of residual acid on desorption ionization using through-hole alumina membrane (DIUTHAME) chips to induce dissociation of high-molecular-weight polymers containing cleavable C-O bonds. All HRMS data were best handled with Kendrick analysis, which helped reveal minor species and allowed automated computation of congested mass spectra.
RESUMO
Calixarenes are cyclic oligomers obtained by condensation of suitable p-functionalised phenols with formaldehyde, usually allowing for the synthesis of the well known small calixarenes (including up to eight phenolic subunits). We report here the discovery of much larger members of this family, exhibiting sizes up to 90 phenolic subunits: the giant calixarenes. These macrocycles are obtained according to simple, easily scalable processes, in yields up to 65%. We show that the formation of these giant macrocycles is favored by an oxygen-containing-group at the para-position of the starting phenol, high concentrations of heavy alkaline bases (rubidium or cesium hydroxides) and long reaction times. A mechanism is proposed to rationalize these observations. These giant macrocycles can also be obtained in the quasi-solid state, opening interesting perspectives in the field of calixarenes chemistry. Along with their intrinsic fundamental interest, these objects are also opening interesting applicative potentialities.
RESUMO
Liquid Chromatography under Limiting Conditions of Desorption (LC LCD) is a powerful separation tool for multicomponent polymer systems. This technique is based on a barrier effect of an appropriate solvent, which is injected in front of the sample, and which decelerates the elution of selected macromolecules. In this study, the barrier effects have been evaluated for triblock copolymers polystyrene-b-poly(ethylene oxide)-b-polystyrene (PS-b-PEO-b-PS) according to the content of polystyrene (wt% PS) and PEO-block molar mass. PS-b-PEO-b-PS samples were prepared by Atom Transfer Radical Polymerization (ATRP). The presence of respective parent homopolymers was investigated by applying optimized LC LCD conditions. It was found that the barrier composition largely affects the efficiency of separation and it ought to be adjusted for particular composition range of block copolymers.
Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Polietilenoglicóis/química , Polímeros/química , Polímeros/isolamento & purificação , Poliestirenos/química , Peso Molecular , Polimerização , SolventesRESUMO
We studied molar mass limits for the LC LCD separation of parent polystyrene (PS) and poly(ethylene oxide) (PEO) homopolymers from PEO/PS based block copolymers and we identified optimized chromatographic conditions. Time delays between barriers and sample injections were 0-2-3'10. Eluent was composed of dimethylformamide (DMF) 40 wt.% and 1-chlorobutane (CLB) 60 wt.%; Barrier 1 (B1), which retained block copolymer, was composed of 100 wt.% CLB and Barrier 2 (B2), which retained PEO, was a mixture of DMF and CLB, which proportions were adjusted to studied block copolymers. With B2 composed of DMF 23 wt.% and CLB 77 wt.%, we obtained successful separation of PS23K-b-PEO35K-b-PS23K (56.5 wt.% of PS, the subscripts indicate the molar mass in kg mol(-1) of each polymer part in the block copolymer) from its parent homopolymers. With B2 adjusted to DMF 30 wt.% and CLB 70 wt.%, PS2.3K-b-PEO3.1K (42.6 wt.% of PS) was also efficiently separated from its parent homopolymers.
Assuntos
Cromatografia Líquida/métodos , Polietilenoglicóis/química , Poliestirenos/química , Butanos , Dimetilformamida , Peso Molecular , SolventesRESUMO
Efficient biomolecule conjugation to the surface of biodegradable colloidal carriers is crucial for their targeting efficiency in drug/vaccine delivery applications. We here propose a potent strategy to drastically improve peptide immobilization on biodegradable polylactide (PLA) nanoparticles (NPs). Our approach particularly relies on the use of an amphiphilic block copolymer PLA-b-poly(N-acryloxysuccinimide-co-N-vinylpyrrolidone) (PLA-b-P(NAS-co-NVP)) as NP surface modifier, whose the N-succinimidyl (NS) ester functions of the NAS units along the polymer chain ensure N-terminal amine peptide coupling. The well-known immunostimulatory peptide sequence derived from the human interleukin 1ß (IL-1ß), VQGEESNDK, was coupled on the NPs of 169 nm mean diameter in phosphate buffer (pH 8, 10 mM). A maximum amount of 2 mg immobilized per gram of NPs (i.e. 0.042 peptidenm(-2)) was obtained. Introduction of a three lysine tag at the peptide N-terminus (KKKVQGEESNDK) resulted in a dramatic improvement of the immobilized peptide amounts (27.5 mg/g NP, i.e. 0.417 peptidenm(-2)). As a comparison, the density of tagged peptide achievable on surfactant free PLA NPs of similar size (140 nm), through classical EDC or EDC/NHS activation of the surface PLA carboxylic end-groups, was found to be 6 mg/g NP (i.e. 0.075 peptidenm(-2)), showing the decisive impact of the P(NAS-co-NVP)-based hairy corona for high peptide coupling. These results demonstrate that combined use of lysine tag and PLA-b-P(NAS-co-NVP) surfactant represents a valuable platform to tune and optimize surface bio-functionalization of PLA-based biodegradable carriers.