Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 18(7): e1010305, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35789210

RESUMO

Circadian clocks enable organisms to predict and align their behaviors and physiologies to constant daily day-night environmental cycle. Because the ubiquitin ligase Siah2 has been identified as a potential regulator of circadian clock function in cultured cells, we have used SIAH2-deficient mice to examine its function in vivo. Our experiments demonstrate a striking and unexpected sexually dimorphic effect of SIAH2-deficiency on the regulation of rhythmically expressed genes in the liver. The absence of SIAH2 in females, but not in males, altered the expression of core circadian clock genes and drastically remodeled the rhythmic transcriptome in the liver by increasing the number of day-time expressed genes, and flipping the rhythmic expression from nighttime expressed genes to the daytime. These effects are not readily explained by effects on known sexually dimorphic pathways in females. Moreover, loss of SIAH2 in females, not males, preferentially altered the expression of transcription factors and genes involved in regulating lipid and lipoprotein metabolism. Consequently, SIAH2-deficient females, but not males, displayed disrupted daily lipid and lipoprotein patterns, increased adiposity and impaired metabolic homeostasis. Overall, these data suggest that SIAH2 may be a key component of a female-specific circadian transcriptional output circuit that directs the circadian timing of gene expression to regulate physiological rhythms, at least in the liver. In turn, our findings imply that sex-specific transcriptional mechanisms may closely interact with the circadian clock to tailor overt rhythms for sex-specific needs.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Feminino , Lipídeos , Lipoproteínas , Masculino , Camundongos , Ubiquitina , Ubiquitina-Proteína Ligases/genética
2.
J Biol Rhythms ; 34(6): 610-621, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31607207

RESUMO

The time-dependent degradation of core circadian clock proteins is essential for the proper functioning of circadian timekeeping mechanisms that drive daily rhythms in gene expression and, ultimately, an organism's physiology. The ubiquitin proteasome system plays a critical role in regulating the stability of most proteins, including the core clock components. Our laboratory developed a cell-based functional screen to identify ubiquitin ligases that degrade any protein of interest and have started screening for those ligases that degrade circadian clock proteins. This screen identified Spsb4 as a putative novel E3 ligase for RevErbα. In this article, we further investigate the role of Spsb4 and its paralogs in RevErbα stability and circadian rhythmicity. Our results indicate that the paralogs Spsb1 and Spsb4, but not Spsb2 and Spsb3, can interact with and facilitate RevErbα ubiquitination and degradation and regulate circadian clock periodicity.


Assuntos
Proteínas CLOCK/genética , Relógios Circadianos/genética , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Linhagem Celular , Ritmo Circadiano/genética , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
3.
J Renin Angiotensin Aldosterone Syst ; 12(3): 195-201, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21292834

RESUMO

INTRODUCTION: Salt-induced hypertension in the Dahl rat is associated with increases in angiotensin II, aldosterone, free radical generation and endothelial dysfunction. However, little is known about the specific mechanism(s) associated with the end-organ damage effects of aldosterone. We hypothesised that eplerenone reduces kidney damage by blocking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. METHODS: Dahl salt-sensitive rats fed either a low-salt (LS) or high-salt (HS) diet were treated with aldosterone in the presence of eplerenone or apocynin. Indirect blood pressure was measured prior to start of diet and weekly thereafter. Levels of plasma nitric oxide (NO) and urinary 8-isoprostane were measured following treatment. Protein levels of selected subunits of NADPH were assessed by western blot. RESULTS: Eplerenone and apocynin inhibited the rise in blood pressure induced by HS and/or aldosterone. This observation was accompanied with a parallel change in kidney protein levels of NADPH oxidase 4 (NOX-4) and p22phox. Aldosterone and high salt were associated with lower NO levels and greater renal oxidative stress. CONCLUSIONS: NADPH oxidase is associated with the vascular and renal remodelling observed in high dietary salt intake. Aldosterone-induced expression of NOX-4 plays a pivotal role in the end-organ damage effect of aldosterone, as eplerenone tended to reduce kidney damage and inhibit NOX expression.


Assuntos
Aldosterona/farmacologia , NADPH Oxidases/metabolismo , Cloreto de Sódio na Dieta/farmacologia , Espironolactona/análogos & derivados , Acetofenonas/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Western Blotting , Peso Corporal/efeitos dos fármacos , Dinoprosta/análogos & derivados , Dinoprosta/urina , Eplerenona , Masculino , NADPH Oxidase 4 , Óxido Nítrico/sangue , Subunidades Proteicas/metabolismo , Proteinúria/sangue , Proteinúria/patologia , Ratos , Ratos Endogâmicos Dahl , Sódio/urina , Espironolactona/farmacologia , Sístole/efeitos dos fármacos , Urinálise
4.
BMC Res Notes ; 4: 125, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21492462

RESUMO

BACKGROUND: Aldosterone, one of the major culprits associated with the renin-angiotensin-aldosterone system (RAAS), is significantly elevated following high salt administration in Dahl rats. Since we have previously demonstrated that aldosterone (ALDO) upregulates cyclooxygenase (COX) expression in the kidney, the present study was design to assess whether prostaglandin release is involved in the effects of chronic aldosterone treatment on vascular function of the aorta from nonhypertensive Dahl salt-sensitive rats. FINDINGS: The effects of aldosterone on arachidonic acid metabolism and on the expression of cyclooxygenase (COX)-2 were evaluated in the Dahl salt sensitive (DS) rat aorta, renal, femoral and carotid arteries. DS rats on a low salt (0.3% NaCl) diet were treated with or without ALDO for four weeks. Indirect blood pressure (BP), the release of prostacyclin (PGI2) and prostaglandin E2, and the expression of COX-2 were measured to assess the vascular remodelling by aldosterone. Vascular function was also assessed by contractile responsiveness in the aorta to phenylephrine. ALDO increased BP (17 ± 1%) and inhibited the basal release of PGE2. ALDO enhanced vascular reactivity to phenylephrine and up regulated the expression of COX-2 in both aorta and renal vessels but reduced COX-2 expression in the femoral artery. CONCLUSIONS: These data reveal that the effect of ALDO in the vasculature is tissue specific and may involve the inhibition of PGE2 release. Thus, suggesting a role for prostaglandins in the vasculopathic aspects of aldosterone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA