Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 9(9)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887438

RESUMO

The essential tea tree oil (TTO) derived from Melaleuca alternifolia plant is widely used as a biopesticide to protect crops from several plant-pathogens. Its activity raised queries regarding its ability to, not only act as a bio-fungicide or bio-bactericide, but also systemically inducing resistance in plants. This was examined by TTO application to banana plants challenged by Fusarium oxysporum f. sp. cubense (Foc, Race 1) causing Fusarium wilt and to tomato plants challenged by Xanthomonas campestris. Parameters to assess resistance induction included: disease development, enzymatic activity, defense genes expression correlated to systemic acquired resistance (SAR) and induced systemic resistance (ISR) and priming effect. Spraying TTO on field-grown banana plants infected with Foc and greenhouse tomato plants infected with Xanthomonas campestris led to resistance induction in both hosts. Several marker genes of salicylic acid, jasmonic acid and ethylene pathways were significantly up-regulated in parallel with symptoms reduction. For tomato plants, we have also recorded a priming effect following TTO treatment. In addition to fungicidal and bactericidal effect, TTO can be applied in more sustainable strategies to control diseases by enhancing the plants ability to defend themselves against pathogens and ultimately diminish chemical pesticides applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA