Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Part Fibre Toxicol ; 19(1): 68, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461106

RESUMO

BACKGROUND: Nanomaterials can exist in different nanoforms (NFs). Their grouping may be supported by the formulation of hypotheses which can be interrogated via integrated approaches to testing and assessment (IATA). IATAs are decision trees that guide the user through tiered testing strategies (TTS) to collect the required evidence needed to accept or reject a grouping hypothesis. In the present paper, we investigated the applicability of IATAs for ingested NFs using a case study that includes different silicon dioxide, SiO2 NFs. Two oral grouping hypotheses addressing local and systemic toxicity were identified relevant for the grouping of these NFs and verified through the application of oral IATAs. Following different Tier 1 and/or Tier 2 in vitro methods of the TTS (i.e., in vitro dissolution, barrier integrity and inflammation assays), we generated the NF datasets. Furthermore, similarity algorithms (e.g., Bayesian method and Cluster analysis) were utilized to identify similarities among the NFs and establish a provisional group(s). The grouping based on Tier 1 and/or Tier 2 testing was analyzed in relation to available Tier 3 in vivo data in order to verify if the read-across was possible and therefore support a grouping decision. RESULTS: The measurement of the dissolution rate of the silica NFs in the oro-gastrointestinal tract and in the lysosome identified them as gradually dissolving and biopersistent NFs. For the local toxicity to intestinal epithelium (e.g. cytotoxicity, membrane integrity and inflammation), the biological results of the gastrointestinal tract models indicate that all of the silica NFs were similar with respect to the lack of local toxicity and, therefore, belong to the same group; in vivo data (although limited) confirmed the lack of local toxicity of NFs. For systemic toxicity, Tier 1 data did not identify similarity across the NFs, with results across different decision nodes being inconsistent in providing homogeneous group(s). Moreover, the available Tier 3 in vivo data were also insufficient to support decisions based upon the obtained in vitro results and relating to the toxicity of the tested NFs. CONCLUSIONS: The information generated by the tested oral IATAs can be effectively used for similarity assessment to support a grouping decision upon the application of a hypothesis related to toxicity in the gastrointestinal tract. The IATAs facilitated a structured data analysis and, by means of the expert's interpretation, supported read-across with the available in vivo data. The IATAs also supported the users in decision making, for example, reducing the testing when the grouping was well supported by the evidence and/or moving forward to advanced testing (e.g., the use of more suitable cellular models or chronic exposure) to improve the confidence level of the data and obtain more focused information.


Assuntos
Nanoestruturas , Dióxido de Silício , Humanos , Dióxido de Silício/toxicidade , Teorema de Bayes , Nanoestruturas/toxicidade , Medição de Risco , Inflamação
2.
Cells ; 8(4)2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970613

RESUMO

: Injured blood vessel repair and blood circulation re-establishment are crucial events for tissue repair. We investigated in primary cultures of human umbilical vein endothelial cells (HUVEC), the effects of platelet lysate (PL), a cocktail of factors released by activated platelets following blood vessel disruption and involved in the wound-healing process triggering. PL exerted a protective effect on HUVEC in an inflammatory milieu by inhibiting IL-1α-activated NF-κB pathway and by inducing the secretion of PGE2, a pro-resolving molecule in the wound microenvironment. Moreover, PL enhanced HUVEC proliferation, without affecting their capability of forming tube-like structures on matrigel, and activated resting quiescent cells to re-enter cell cycle. In agreement with these findings, proliferation-related pathways Akt and ERK1/2 were activated. The expression of the cell-cycle activator Cyclin D1 was also enhanced, as well as the expression of the High Mobility Group Box-1 (HMGB1), a protein of the alarmin group involved in tissue homeostasis, repair, and remodeling. These in vitro data suggest a possible in vivo contribution of PL to new vessel formation after a wound by activation of cells resident in vessel walls. Our biochemical study provides a rationale for the clinical use of PL in the treatment of wound healing-related pathologies.


Assuntos
Fatores de Coagulação Sanguínea/fisiologia , Plaquetas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Plaquetas/citologia , Diferenciação Celular , Células Cultivadas , Ciclina D1/metabolismo , Proteína HMGB1/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
3.
Artigo em Inglês | MEDLINE | ID: mdl-30622945

RESUMO

Skin chronic wounds are non-healing ulcerative defects, which arise in association with a morbidity state, such as diabetes and vascular insufficiency or as the consequence of systemic factors including advanced age. Platelet Rich Plasma, a platelet-rich blood fraction, can significantly improve the healing of human skin chronic ulcers. Given that the subcutaneous adipose tissue is located beneath the skin and plays a role in the skin homeostasis, in this study, we investigated the in vitro response of human subcutaneous adipose tissue cells to platelet content in a model mimicking in vitro the in situ milieu of a deep skin injury. Considering that, at the wound site, plasma turn to serum, platelets are activated and inflammation occurs, human adipose-derived stromal cells (hASC) were cultured with Human Serum (HS) supplemented or not with Platelet Lysate (PL) and/or IL-1α. We observed that HS sustained hASC proliferation more efficiently than FBS and induced a spontaneous adipogenic differentiation in the cells. PL added to HS enhanced hASC proliferation, regardless the presence of IL-1α. In the presence of PL, hASC progressively lessened the adipogenic phenotype, possibly because the proliferation of less committed cells was induced. However, these cells resumed adipogenesis in permissive conditions. Accordingly, PL induced in quiescent cells activation of the proliferation-related pathways ERK, Akt, and STAT-3 and expression of Cyclin D1. Moreover, PL induced an early and transient increase of the pro-inflammatory response triggered by IL-1α, by inducing COX-2 expression and secretion of a large amount of PGE2, IL-6, and IL-8. Media conditioned by PL-stimulated hASC exerted a chemotactic activity on human keratinocytes and favored the healing of an in vitro scratch wound. In order to bridge the gap between in vitro results and possible in vivo events, the stimuli were also tested in ex vivo cultures of in toto human adipose tissue biopsies (hAT). PL induced cell proliferation in hAT and outgrowth of committed progenitor cells able to differentiate in permissive conditions. In conclusion, we report that the adipose tissue responds to the wound microenvironment by activating the proliferation of adipose tissue progenitor cells and promoting the release of factors favoring wound healing.

4.
Cell Reprogram ; 18(2): 116-26, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26982278

RESUMO

Recent studies have revealed the presence of a mesenchymal stem cell (MSC) population in human and in gilt granulosa cells (GCs), thus increasing the interest in identifying the same population in the bovine species. We first isolated GCs by scraping from bovine preovulatory follicles and then tested several different media to define the ideal conditions to select granulosa-derived stem cells. Although expressing MSC-associated markers, none of the media tested proven to be efficient in selecting MSC-like cells that were able to differentiate into mesodermic or ectodermic lineages. We performed another experimental approach exposing cells to a chemical stress, such as lowering of pH, as a system to select a more plastic population. Following the treatment, granulosa-specific granulose markers [follicle-stimulating hormone receptor (FSHR), follistatin (FST), and leukemia inhibitory factor receptor (LIFR)] were lost in bovine GCs, whereas an increase in multi- (CD29, CD44, CD73) and pluripotent (Oct-4 and c-Myc) genes was noticed. The stress allowed up-regulation of tumor necrosis factor-α and interleukin-1ß expression and the dedifferentiation of GCs, which was demonstrated by differentiation studies. Indeed, pH-treated cells were able to differentiate into the mesodermic and ectodermic lineages, thus suggesting that the chemical stress allows for the selection of cells that are more prone to adjust and respond to the environmental changes.


Assuntos
Antígenos de Diferenciação/biossíntese , Regulação da Expressão Gênica , Células da Granulosa , Animais , Bovinos , Células Cultivadas , Feminino , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
5.
PLoS One ; 9(10): e111324, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360561

RESUMO

Amniotic membrane-derived mesenchymal cells (AMCs) are considered suitable candidates for a variety of cell-based applications. In view of cell therapy application in uterine pathologies, we studied AMCs in comparison to cells isolated from the endometrium of mares at diestrus (EDCs) being the endometrium during diestrus and early pregnancy similar from a hormonal standpoint. In particular, we demonstrated that amnion tissue fragments (AM) shares the same transcriptional profile with endometrial tissue fragments (ED), expressing genes involved in early pregnancy (AbdB-like Hoxa genes), pre-implantation conceptus development (Erα, PR, PGRMC1 and mPR) and their regulators (Wnt7a, Wnt4a). Soon after the isolation, only AMCs express Wnt4a and Wnt7a. Interestingly, the expression levels of prostaglandin-endoperoxide synthase 2 (PTGS2) were found greater in AM and AMCs than their endometrial counterparts thus confirming the role of AMCs as mediators of inflammation. The expression of nuclear progesterone receptor (PR), membrane-bound intracellular progesterone receptor component 1 (PGRMC1) and membrane-bound intracellular progesterone receptor (mPR), known to lead to improved endometrial receptivity, was maintained in AMCs over 5 passages in vitro when the media was supplemented with progesterone. To further explore the potential of AMCs in endometrial regeneration, their capacity to support resident cell proliferation was assessed by co-culturing them with EDCs in a transwell system or culturing in the presence of AMC-conditioned medium (AMC-CM). A significant increase in EDC proliferation rate exhibited the crucial role of soluble factors as mediators of stem cells action. The present investigation revealed that AMCs, as well as their derived conditioned media, have the potential to improve endometrial cell replenishment when low proliferation is associated to pregnancy failure. These findings make AMCs suitable candidates for the treatment of endometrosis in mares.


Assuntos
Âmnio/citologia , Meios de Cultivo Condicionados , Células-Tronco Mesenquimais/citologia , Regeneração , Útero/citologia , Útero/fisiologia , Animais , Proliferação de Células , Endométrio/citologia , Feminino , Cavalos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA