Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
EMBO Rep ; 23(3): e53191, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35037361

RESUMO

The pluripotent state is not solely governed by the action of the core transcription factors OCT4, SOX2, and NANOG, but also by a series of co-transcriptional and post-transcriptional events, including alternative splicing (AS) and the interaction of RNA-binding proteins (RBPs) with defined subpopulations of RNAs. Zinc Finger Protein 207 (ZFP207) is an essential transcription factor for mammalian embryonic development. Here, we employ multiple functional analyses to characterize its role in mouse embryonic stem cells (ESCs). We find that ZFP207 plays a pivotal role in ESC maintenance, and silencing of Zfp207 leads to severe neuroectodermal differentiation defects. In striking contrast to human ESCs, mouse ZFP207 does not transcriptionally regulate neuronal and stem cell-related genes but exerts its effects by controlling AS networks and by acting as an RBP. Our study expands the role of ZFP207 in maintaining ESC identity, and underscores the functional versatility of ZFP207 in regulating neural fate commitment.


Assuntos
Processamento Alternativo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , RNA , Animais , Diferenciação Celular/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , RNA/metabolismo
2.
Vet Res ; 54(1): 91, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845774

RESUMO

The microbiota in humans and animals play crucial roles in defense against pathogens and offer a promising natural source for immunomodulatory products. However, the development of physiologically relevant model systems and protocols for testing such products remains challenging. In this study, we present an experimental condition where various natural products derived from the registered lactic acid bacteria Ligilactobacillus salivarius CECT 9609, known for their immunomodulatory activity, were tested. These products included live and inactivated bacteria, as well as fermentation products at different concentrations and culture times. Using our established model system, we observed no morphological changes in the airway epithelium upon exposure to Pasteurella multocida, a common respiratory pathogen. However, early molecular changes associated with the innate immune response were detected through transcript analysis. By employing diverse methodologies ranging from microscopy to next-generation sequencing (NGS), we characterized the interaction of these natural products with the airway epithelium and their potential beneficial effects in the presence of P. multocida infection. In particular, our discovery highlights that among all Ligilactobacillus salivarius CECT 9609 products tested, only inactivated cells preserve the conformation and morphology of respiratory epithelial cells, while also reversing or altering the natural immune responses triggered by Pasteurella multocida. These findings lay the groundwork for further exploration into the protective role of these bacteria and their derivatives.


Assuntos
Produtos Biológicos , Ligilactobacillus salivarius , Infecções por Pasteurella , Pasteurella multocida , Humanos , Animais , Imunidade Inata , Células Epiteliais , Produtos Biológicos/farmacologia , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/veterinária
3.
Stem Cells ; 39(12): 1733-1750, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34423894

RESUMO

Skin integrity requires constant maintenance of a quiescent, yet responsive, population of stem cells. While interfollicular epidermal progenitors control normal homeostasis, hair follicle stem cells residing within the bulge provide regenerative potential during hair cycle and in response to wounding. The aryl hydrocarbon receptor (AhR) modulates cell plasticity and differentiation and its overactivation results in severe skin lesions in humans. However, its physiological role in skin homeostasis and hair growth is unknown. Reconstitution assays grafting primary keratinocytes and dermal fibroblasts into nude mice and 3-D epidermal equivalents revealed a positive role for AhR in skin regeneration, epidermal differentiation, and stem cell maintenance. Furthermore, lack of receptor expression in AhR-/- mice delayed morphogenesis and impaired hair regrowth with a phenotype closely correlating with a reduction in suprabasal bulge stem cells (α6low CD34+ ). Moreover, RNA-microarray and RT-qPCR analyses of fluorescence-activated cell sorting (FACS)-isolated bulge stem cells revealed that AhR depletion impaired transcriptional signatures typical of both epidermal progenitors and bulge stem cells but upregulated differentiation markers likely compromising their undifferentiated phenotype. Altogether, our findings support that AhR controls skin regeneration and homeostasis by ensuring epidermal stem cell identity and highlights this receptor as potential target for the treatment of cutaneous pathologies.


Assuntos
Folículo Piloso , Receptores de Hidrocarboneto Arílico , Células-Tronco , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Epiderme , Homeostase , Camundongos , Camundongos Nus , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Células-Tronco/citologia
4.
FASEB J ; 35(9): e21816, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34396583

RESUMO

Proper physiological function of mammalian airways requires the differentiation of basal stem cells into secretory or multiciliated cells, among others. In addition, the self-renewal ability of these basal stem cells is crucial for developing a quick response to toxic agents in order to re-establish the epithelial barrier function of the airways. Although these epithelial missions are vital, little is known about those mechanism controlling airway epithelial regeneration in health and disease. p53 has been recently proposed as the guardian of homeostasis, promoting differentiation programs, and antagonizing a de-differentiation program. Here, we exploit mouse and human tracheal epithelial cell culture models to study the role of MDM2-p53 signaling in self-renewal and differentiation in the airway epithelium. We show that p53 protein regulation by MDM2 is crucial for basal stem cell differentiation and to keep proper cell proliferation. Therefore, we suggest that MDM2/p53 interaction modulation is a potential target to control regeneration of the mammalian airway epithelia without massively affecting the epithelium integrity and differentiation potential.


Assuntos
Diferenciação Celular/fisiologia , Epitélio/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Mucosa Respiratória/metabolismo , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proliferação de Células/fisiologia , Células Epiteliais/metabolismo , Feminino , Homeostase/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Traqueia/metabolismo
5.
Development ; 145(23)2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30389850

RESUMO

In vertebrates, planar polarization of ciliary basal bodies has been associated with actin polymerization that occurs downstream of the Frizzled-planar cell polarity (Fz-PCP) pathway. In Drosophila wing epithelial cells, which do not have cilia, centrioles also polarize in a Fz-PCP-dependent manner, although the relationship with actin polymerization remains unknown. By combining existing and new quantitative methods, we unexpectedly found that known PCP effectors linked to actin polymerization phenotypes affect neither final centriole polarization nor apical centriole distribution. But actin polymerization is required upstream of Fz-PCP to maintain the centrioles in restricted areas in the apical-most planes of those epithelial cells before and after the actin-based hair is formed. Furthermore, in the absence of proper core Fz-PCP signalling, actin polymerization is insufficient to drive this off-centred centriole migration. Altogether, the results reveal that there are at least two pathways controlling centriole positioning in Drosophila pupal wings - an upstream actin-dependent mechanism involved in centriole distribution that is PCP independent, and an unknown mechanism that links core Fz-PCP and centriole polarization.


Assuntos
Polaridade Celular , Centríolos/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Asas de Animais/citologia , Asas de Animais/metabolismo , Actinas/metabolismo , Animais , Polaridade Celular/efeitos dos fármacos , Centríolos/efeitos dos fármacos , Citocalasina D/farmacologia , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Mutação com Ganho de Função/genética , Mutação com Perda de Função/genética , Fenótipo , Polimerização
6.
Exp Eye Res ; 209: 108681, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34166683

RESUMO

Planar cell polarity (PCP) is evolutionary conserved and play a critical role in proper tissue development and function. During central nervous system development, PCP proteins exhibit specific patterns of distribution and are indispensable for axonal growth, dendritogenesis, neuronal migration, and neuronal differentiation. The retina constitutes an excellent model in which to study molecular mechanisms involved in neural development. The analysis of the spatiotemporal expression of PCP proteins in this model constitutes an useful histological approach in order to identify possible roles of these proteins in retinogenesis. Immunohistochemical techniques revealed that Frz6, Celsr1, Vangl1, Pk1, Pk3, and Fat1 were present in emerging axons from recently differentiated ganglion cells in the chicken retina. Except for Vangl1, they were also asymmetrically distributed in differentiated amacrine cells. Pk1 and Pk3 were restricted in the outer nuclear layer to the outer segment of photoreceptors. Vangl1 was also located in the cell somata of Müller glia. Given these findings together, the distribution of PCP proteins in the developing chicken retina suggest essential roles in axonal guidance during early retinogenesis and a possible involvement in the establishment of cell asymmetry and maintenance of retinal cell phenotypes.


Assuntos
Axônios/metabolismo , Polaridade Celular/fisiologia , Neuroglia/metabolismo , Retina/embriologia , Células Ganglionares da Retina/metabolismo , Animais , Diferenciação Celular , Embrião de Galinha , Modelos Animais , Retina/metabolismo , Células Ganglionares da Retina/citologia
7.
Development ; 142(1): 41-50, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25480918

RESUMO

Genetic data indicate that abrogation of Notch-Rbpj or Wnt-ß-catenin pathways results in the loss of the intestinal stem cells (ISCs). However, whether the effect of Notch is direct or due to the aberrant differentiation of the transit-amplifying cells into post-mitotic goblet cells is unknown. To address this issue, we have generated composite tamoxifen-inducible intestine-specific genetic mouse models and analyzed the expression of intestinal differentiation markers. Importantly, we found that activation of ß-catenin partially rescues the differentiation phenotype of Rbpj deletion mutants, but not the loss of the ISC compartment. Moreover, we identified Bmi1, which is expressed in the ISC and progenitor compartments, as a gene that is co-regulated by Notch and ß-catenin. Loss of Bmi1 resulted in reduced proliferation in the ISC compartment accompanied by p16(INK4a) and p19(ARF) (splice variants of Cdkn2a) accumulation, and increased differentiation to the post-mitotic goblet cell lineage that partially mimics Notch loss-of-function defects. Finally, we provide evidence that Bmi1 contributes to ISC self-renewal.


Assuntos
Intestinos/patologia , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Compartimento Celular , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p19/genética , Inibidor de Quinase Dependente de Ciclina p19/metabolismo , Reparo do DNA , Homeostase , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/deficiência , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Intestinos/anormalidades , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Complexo Repressor Polycomb 1/deficiência , Complexo Repressor Polycomb 1/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Receptores Notch/deficiência , Ativação Transcricional/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
8.
Genome Res ; 21(3): 422-32, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21324874

RESUMO

Complex genomes utilize insulators and boundary elements to help define spatial and temporal gene expression patterns. We report that a genome-wide B1 SINE (Short Interspersed Nuclear Element) retrotransposon (B1-X35S) has potent intrinsic insulator activity in cultured cells and live animals. This insulation is mediated by binding of the transcription factors dioxin receptor (AHR) and SLUG (SNAI2) to consensus elements present in the SINE. Transcription of B1-X35S is required for insulation. While basal insulator activity is maintained by RNA polymerase (Pol) III transcription, AHR-induced insulation involves release of Pol III and engagement of Pol II transcription on the same strand. B1-X35S insulation is also associated with enrichment of heterochromatin marks H3K9me3 and H3K27me3 downstream of B1-X35S, an effect that varies with cell type. B1-X35S binds parylated CTCF and, consistent with a chromatin barrier activity, its positioning between two adjacent genes correlates with their differential expression in mouse tissues. Hence, B1 SINE retrotransposons represent genome-wide insulators activated by transcription factors that respond to developmental, oncogenic, or toxicological stimuli.


Assuntos
RNA Polimerase III/metabolismo , RNA Polimerase II/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Elementos Nucleotídeos Curtos e Dispersos/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Adaptação Biológica , Animais , Células Cultivadas , Imunoprecipitação da Cromatina , Expressão Gênica , Genes Reguladores , Marcadores Genéticos , Genoma , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Elementos Isolantes/genética , Camundongos , Camundongos Transgênicos , RNA Polimerase II/genética , RNA Polimerase III/genética , Receptores de Hidrocarboneto Arílico/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Peixe-Zebra
9.
Plants (Basel) ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611519

RESUMO

Olive (Olea europaea L.) is one of the major oil fruit tree crops worldwide. However, the mechanisms underlying olive fruit growth remain poorly understood. Here, we examine questions regarding the interaction of endoreduplication, cell division, and cell expansion with olive fruit growth in relation to the final fruit size by measuring fruit diameter, pericarp thickness, cell area, and ploidy level during fruit ontogeny in three olive cultivars with different fruit sizes. The results demonstrate that differences in the fruit size are related to the maximum growth rate between olive cultivars during early fruit growth, about 50 days post-anthesis (DPA). Differences in fruit weight between olive cultivars were found from 35 DPA, while the distinctive fruit shape became detectable from 21 DPA, even though the increase in pericarp thickness became detectable from 7 DPA in the three cultivars. During early fruit growth, intense mitotic activity appeared during the first 21 DPA in the fruit, whereas the highest cell expansion rates occurred from 28 to 42 DPA during this phase, suggesting that olive fruit cell number is determined from 28 DPA in the three cultivars. Moreover, olive fruit of the large-fruited cultivars was enlarged due to relatively higher cell division and expansion rates compared with the small-fruited cultivar. The ploidy level of olive fruit pericarp between early and late growth was different, but similar among olive cultivars, revealing that ploidy levels are not associated with cell size, in terms of different 8C levels during olive fruit growth. In the three olive cultivars, the maximum endoreduplication level (8C) occurred just before strong cell expansion during early fruit growth in fruit pericarp, whereas the cell expansion during late fruit growth occurred without preceding endoreduplication. We conclude that the basis for fruit size differences between olive cultivars is determined mainly by different cell division and expansion rates during the early fruit growth phase. These data provide new findings on the contribution of fruit ploidy and cell size to fruit size in olive and ultimately on the control of olive fruit development.

10.
NAR Cancer ; 6(2): zcae024, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38751936

RESUMO

In this review, we explore the transformative impact of next generation sequencing technologies in the realm of translatomics (the study of how translational machinery acts on a genome-wide scale). Despite the expectation of a direct correlation between mRNA and protein content, the complex regulatory mechanisms that affect this relationship remark the limitations of standard RNA-seq approaches. Then, the review characterizes crucial techniques such as polysome profiling, ribo-seq, trap-seq, proximity-specific ribosome profiling, rnc-seq, tcp-seq, qti-seq and scRibo-seq. All these methods are summarized within the context of cancer research, shedding light on their applications in deciphering aberrant translation in cancer cells. In addition, we encompass databases and bioinformatic tools essential for researchers that want to address translatome analysis in the context of cancer biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA