Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 172(1): 489-509, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27462085

RESUMO

Bud outgrowth is controlled by environmental and endogenous factors. Through the use of the photosynthesis inhibitor norflurazon and of masking experiments, evidence is given here that light acts mainly as a morphogenic signal in the triggering of bud outgrowth and that initial steps in the light signaling pathway involve cytokinins (CKs). Indeed, in rose (Rosa hybrida), inhibition of bud outgrowth by darkness is suppressed solely by the application of CKs. In contrast, application of sugars has a limited effect. Exposure of plants to white light (WL) induces a rapid (after 3-6 h of WL exposure) up-regulation of CK synthesis (RhIPT3 and RhIPT5), of CK activation (RhLOG8), and of CK putative transporter RhPUP5 genes and to the repression of the CK degradation RhCKX1 gene in the node. This leads to the accumulation of CKs in the node within 6 h and in the bud at 24 h and to the triggering of bud outgrowth. Molecular analysis of genes involved in major mechanisms of bud outgrowth (strigolactone signaling [RwMAX2], metabolism and transport of auxin [RhPIN1, RhYUC1, and RhTAR1], regulation of sugar sink strength [RhVI, RhSUSY, RhSUC2, and RhSWEET10], and cell division and expansion [RhEXP and RhPCNA]) reveal that, when supplied in darkness, CKs up-regulate their expression as rapidly and as intensely as WL Additionally, up-regulation of CKs by WL promotes xylem flux toward the bud, as evidenced by Methylene Blue accumulation in the bud after CK treatment in the dark. Altogether, these results suggest that CKs are initial components of the light signaling pathway that controls the initiation of bud outgrowth.


Assuntos
Citocininas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Meristema/genética , Brotos de Planta/genética , Citocininas/farmacologia , Escuridão , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Modelos Biológicos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rosa/genética , Rosa/crescimento & desenvolvimento , Rosa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Fatores de Tempo , Xilema/genética , Xilema/crescimento & desenvolvimento , Xilema/metabolismo
2.
J Exp Bot ; 66(9): 2569-82, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25873679

RESUMO

Sugar has only recently been identified as a key player in triggering bud outgrowth, while hormonal control of bud outgrowth is already well established. To get a better understanding of sugar control, the present study investigated how sugar availability modulates the hormonal network during bud outgrowth in Rosa hybrida. Other plant models, for which mutants are available, were used when necessary. Buds were grown in vitro to manipulate available sugars. The temporal patterns of the hormonal regulatory network were assessed in parallel with bud outgrowth dynamics. Sucrose determined bud entrance into sustained growth in a concentration-dependent manner. Sustained growth was accompanied by sustained auxin production in buds, and sustained auxin export in a DR5::GUS-expressing pea line. Several events occurred ahead of sucrose-stimulated bud outgrowth. Sucrose upregulated early auxin synthesis genes (RhTAR1, RhYUC1) and the auxin efflux carrier gene RhPIN1, and promoted PIN1 abundance at the plasma membrane in a pPIN1::PIN1-GFP-expressing tomato line. Sucrose downregulated both RwMAX2, involved in the strigolactone-transduction pathway, and RhBRC1, a repressor of branching, at an early stage. The presence of sucrose also increased stem cytokinin content, but sucrose-promoted bud outgrowth was not related to that pathway. In these processes, several non-metabolizable sucrose analogues induced sustained bud outgrowth in R. hybrida, Pisum sativum, and Arabidopsis thaliana, suggesting that sucrose was involved in a signalling pathway. In conclusion, we identified potential hormonal candidates for bud outgrowth control by sugar. They are central to future investigations aimed at disentangling the processes that underlie regulation of bud outgrowth by sugar.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Rosa/crescimento & desenvolvimento , Sacarose/metabolismo , Transporte Biológico , Citocininas/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rosa/genética , Rosa/metabolismo , Transdução de Sinais
3.
Data Brief ; 51: 109784, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053599

RESUMO

A crucial attribute of potted ornamental plants is compactness characterized by well branched plants with rather short stems bearing numerous flowers. To gain plant compactness, producers use plant growth regulators (PGRs), in particular growth retardants during culture. However, due to their negative environmental impacts, growth retardants are progressively withdrawn from the market. As a response, eco-friendly alternative methods to chemicals need to be developed. One method consists in mimicking mechanical stimulation (MS) imposed by wind on plants which causes reduction in stem elongation, an increase in stem diameter and an increase in branching, all contributing to plant compactness. So far, few plant species were studied under MS and little is known on molecular response mechanisms to MS. This first transcriptomic data after MS in Hydrangea macrophylla will contribute unravelling how plants respond to mechanical stimuli. RNAseq data were obtained from total mRNA of stems collected 15 min before MS and 1, 3, 24 and 72 h after MS treatment. RNA from non-MS treated plants were used as control. MS treatment consisted in 12 consecutive bendings (i.e. 6 forth and 6 back) applied at 9 a.m. during 1 h and for a single day. From RNAseq data a de novo assembly of the transcriptome was produced and 78,398 transcripts functionally annotated. These transcriptomic data also contribute to a better knowledge of how outdoor crop respond to the increasing frequency of strong harmful winds under climate change.

4.
Front Plant Sci ; 14: 1268272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38293622

RESUMO

Environmental prejudices progressively lead to the ban of dwarfing molecules in agriculture, and alternatives are urgently required. Mechanical stimulation (MS) is a promising, eco-friendly, and economical technique, but some responses to mechanical stimulation vary from one plant species to another. Additionally, as more frequent and violent wind episodes are forecasted under global climate change, knowledge of plant responses to stimuli mimicking wind sways is decisive for agriculture. However, little is known about plant mechanosensitive responses after long-term, recurrent MS. Here, the effects of 3-week, recurrent, symmetrical bendings (1 or 12 per day) in Hydrangea macrophylla stems are examined. Bendings repressed internode elongation and leaf area development, whereas the diametrical growth of the basal internode is increased. Responses were dose-dependent, and no desensitization was observed during the 3 weeks of treatment. MS was almost as efficient as daminozide for plant dwarfing, and it improved stem robustness. Histological and molecular responses to MS were spatially monitored and were concordant with ongoing primary or secondary growth in the internodes. Our molecular data provide the first knowledge on the molecular paths controlled by mechanical loads in Hydrangea and revealed for the first time the involvement of XYP1 in thigmomorphogenetic responses. MS still had a transcriptional impact 48 h after the last bending session, promoting the expression of XYP1, FLA11, and CAD1 while repressing the expression of EXP3 and XTH33 homologs in accordance with xylogenesis, cell wall thickening, and lignin deposition in the xylem of basal internodes. In upper elongating internodes, repression of XYP1, CAD1, SAMS1, and CDC23 homologs is correlated with ongoing primary, even though stunted, growth. For producers, our findings highlight the potential of MS as a sustainable and economical option for controlling plant compactness in Hydrangea and show valuable reinforcement of stem strength.

5.
J Plant Physiol ; 222: 17-27, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29353122

RESUMO

Nitrogen is required for optimal plant growth, especially in young organs such as secondary axes (axes II) after axillary bud outgrowth. Several studies have shown an increase of nitrogen concentration in xylem sap concomitantly with bud outgrowth, but the relation between nitrogen, sugars and plant hormones in axis II still remains unclear. We investigated in Rosa hybrida the involvement of nitrogen nutrition in axis II elongation in relation with sugars and cytokinins using 15N-labeled nitrate and sugars, amino acids and cytokinin quantifications. Besides, we measured the effect of the exogenous supply of these compounds on axis II elongation using in vitro excised bud culture. We demonstrated that nitrogen in the axis II comes mainly from new root uptake after decapitation. Asparagine, which concentration increases in sap exudates and tissues during axis II elongation, was the sole amino acid able to sustain an efficient elongation in vitro when supplied in combination with sucrose.


Assuntos
Asparagina/metabolismo , Nitrogênio/metabolismo , Rosa/metabolismo , Sacarose/metabolismo , Transporte Biológico , Citocininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Rosa/crescimento & desenvolvimento
6.
Plant Signal Behav ; 12(2): e1284725, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28263675

RESUMO

Bud outgrowth is under the intricate control of environmental and endogenous factors. In a recent paper, 1 we demonstrated that light perceived by Rosa buds triggers cytokinins (CK) synthesis within 3 hours in the adjacent node followed by their transport to the bud. There, CK control expression of a set of major genes (strigolactones-, auxin-, sugar sink strength-, cells division and elongation-related genes) leading to bud outgrowth in light. Conversely, under dark condition, CK accumulation and transport to the bud are repressed and no bud outgrowth occurs. In this paper, we show that the 3 expansin genes RhEXPA1,2,3 are under the control of both light and CK during bud outgrowth. In silico analysis of promoter sequences highlights 2 regions enriched in light and CK cis-regulatory elements as well as a specific cis-element in pRhEXPA3, potentially responsible for the expression patterns observed in response to CK and light.


Assuntos
Citocininas/farmacologia , Luz , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/efeitos da radiação , Rosa/efeitos dos fármacos , Rosa/metabolismo
7.
Front Plant Sci ; 8: 1724, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29067031

RESUMO

Bud outgrowth is a key process in the elaboration of yield and visual quality in rose crops. Although light intensity is well known to affect bud outgrowth, little is known on the mechanisms involved in this regulation. The objective of this work was to test if the control of bud outgrowth pattern along the stem by photosynthetic photon flux density (PPFD) is mediated by sugars, cytokinins and/or abscisic acid in intact rose plants. Rooted cuttings of Rosa hybrida 'Radrazz' were grown in growth chambers under high PPFD (530 µmol m-2 s-1) until the floral bud visible stage. Plants were then either placed under low PPFD (90 µmol m-2 s-1) or maintained under high PPFD. Bud outgrowth inhibition by low PPFD was associated with lower cytokinin and sugar contents and a higher abscisic acid content in the stem. Interestingly, cytokinin supply to the stem restored bud outgrowth under low PPFD. On the other hand, abscisic acid supply inhibited outgrowth under high PPFD and antagonized bud outgrowth stimulation by cytokinins under low PPFD. In contrast, application of sugars did not restore bud outgrowth under low PPFD. These results suggest that PPFD regulation of bud outgrowth in rose involves a signaling pathway in which cytokinins and abscisic acid play antagonistic roles. Sugars can act as nutritional and signaling compounds and may be involved too, but do not appear as the main regulator of the response to PPFD.

8.
Plants (Basel) ; 3(2): 223-50, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-27135502

RESUMO

Branching determines the final shape of plants, which influences adaptation, survival and the visual quality of many species. It is an intricate process that includes bud outgrowth and shoot extension, and these in turn respond to environmental cues and light conditions. Light is a powerful environmental factor that impacts multiple processes throughout plant life. The molecular basis of the perception and transduction of the light signal within buds is poorly understood and undoubtedly requires to be further unravelled. This review is based on current knowledge on bud outgrowth-related mechanisms and light-mediated regulation of many physiological processes. It provides an extensive, though not exhaustive, overview of the findings related to this field. In parallel, it points to issues to be addressed in the near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA