Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int J Mol Sci ; 19(12)2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30477143

RESUMO

Oxidative stress has been implicated in the pathophysiology of numerous terrestrial disease processes and associated with morbidity following spaceflight. Furthermore, oxidative stress has long been considered a causative agent in adverse reproductive outcomes. The purpose of this review is to summarize the pathogenesis of oxidative stress caused by cosmic radiation and microgravity, review the relationship between oxidative stress and reproductive outcomes in females, and explore what role spaceflight-induced oxidative damage may have on female reproductive and developmental outcomes.


Assuntos
Biomarcadores , Desenvolvimento Embrionário , Estresse Oxidativo , Reprodução , Voo Espacial , Animais , Radiação Cósmica , Epigênese Genética , Feminino , Hormese , Humanos , Infertilidade , Padrões de Herança , Oxirredução , Gravidez , Caracteres Sexuais , Ausência de Peso
2.
Sci Rep ; 14(1): 7334, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409284

RESUMO

Exposure to cosmic ionizing radiation is an innate risk of the spaceflight environment that can cause DNA damage and altered cellular function. In astronauts, longitudinal monitoring of physiological systems and interactions between these systems are important to consider for mitigation strategies. In addition, assessments of sex-specific biological responses in the unique environment of spaceflight are vital to support future exploration missions that include both females and males. Here we assessed sex-specific, multi-system immune and endocrine responses to simulated cosmic radiation. For this, 24-week-old, male and female C57Bl/6J mice were exposed to simplified five-ion, space-relevant galactic cosmic ray (GCRsim) radiation at 15 and 50 cGy, to simulate predicted radiation exposures that would be experienced during lunar and Martian missions, respectively. Blood and adrenal tissues were collected at 3- and 14-days post-irradiation for analysis of immune and endocrine biosignatures and pathways. Sexually dimorphic adrenal gland weights and morphology, differential total RNA expression with corresponding gene ontology, and unique immune phenotypes were altered by GCRsim. In brief, this study offers new insights into sexually dimorphic immune and endocrine kinetics following simulated cosmic radiation exposure and highlights the necessity for personalized translational approaches for astronauts during exploration missions.


Assuntos
Radiação Cósmica , Marte , Voo Espacial , Camundongos , Masculino , Feminino , Animais , Meio Ambiente Extraterreno , Caracteres Sexuais , Radiação Ionizante , Astronautas , Radiação Cósmica/efeitos adversos , Imunidade
3.
Eur J Neurosci ; 37(10): 1564-72, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23489835

RESUMO

Mouse models with prenatal alterations in dopaminergic functioning can provide new opportunities to identify fetal behavioral abnormalities and the underlying neural substrates dependent on dopamine. In this study, we tested the hypothesis that prenatal loss of nigrostriatal function is associated with fetal akinesia, or difficulty initiating movement. Specific behaviors were analysed in fetal offspring derived from pregnant Pitx3(ak) /2J and C57BL/6J dams on the last 4 days before birth (E15-18 of a 19-day gestation). Using digital videography, we analysed: (i) behavioral state, by quantification of high- and low-amplitude movements, (ii) interlimb movement synchrony, a measure of the temporal relationship between spontaneous movements of limb pairs, (iii) facial wiping, a characteristic response to perioral tactile stimulation similar to the defensive response in human infants, and (iv) oral grasp of a non-nutritive nipple, a component of suckling in the human infant. Pitx3 mutants showed a selective decrease in interlimb movement synchrony rates at the shortest (0.1 s) temporal interval coupled with significantly increased latencies to exhibit facial wiping and oral grasp. Collectively, our findings provide evidence that the primary fetal neurobehavioral deficit of the Pitx3 mutation is akinesia related to nigrostriatal damage. Other findings of particular interest were the differences in neurobehavioral functioning between C57BL/6J and Pitx3 heterozygous subjects, suggesting the two groups are not equivalent controls. These results further suggest that fetal neurobehavioral assessments are sensitive indicators of emerging neural dysfunction, and may have utility for prenatal diagnosis.


Assuntos
Dopamina/metabolismo , Movimento Fetal/genética , Proteínas de Homeodomínio/genética , Fenótipo , Fatores de Transcrição/genética , Animais , Heterozigoto , Camundongos , Camundongos Endogâmicos C57BL , Substância Negra/embriologia , Substância Negra/fisiologia
4.
NMR Biomed ; 26(6): 683-91, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23322706

RESUMO

This study represents the first longitudinal, within-subject (1) H MRS investigation of the developing rat brain spanning infancy, adolescence and early adulthood. We obtained neurometabolite profiles from a voxel located in a central location of the forebrain, centered on the striatum, with smaller contributions for the cortex, thalamus and hypothalamus, on postnatal days 7, 35 and 60. Water-scaled metabolite signals were corrected for T1 effects and quantified using the automated processing software LCModel, yielding molal concentrations. Our findings indicate age-related concentration changes in N-acetylaspartate + N-acetylaspartylglutamate, myo-inositol, glutamate + glutamine, taurine, creatine + phosphocreatine and glycerophosphocholine + phosphocholine. Using a repeated measures design and analysis, we identified significant neurodevelopment changes across all three developmental ages and identified adolescence as a distinctive phase in normative neurometabolic brain development. Between postnatal days 35 and 60, changes were observed in the concentrations of N-acetylaspartate + N-acetylaspartylglutamate, glutamate + glutamine and glycerophosphocholine + phosphocholine. Our data replicate past studies of early neurometabolite development and, for the first time, link maturational profiles in the same subjects across infancy, adolescence and adulthood.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Prosencéfalo/metabolismo , Envelhecimento , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Dipeptídeos/metabolismo , Ácido Glutâmico/metabolismo , Inositol/metabolismo , Masculino , Fosfocreatina/metabolismo , Prosencéfalo/crescimento & desenvolvimento , Ratos , Ratos Sprague-Dawley , Taurina/metabolismo
5.
Life (Basel) ; 13(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240858

RESUMO

Exposure to space galactic cosmic radiation is a principal consideration for deep space missions. While the effects of space irradiation on the nervous system are not fully known, studies in animal models have shown that exposure to ionizing radiation can cause neuronal damage and lead to downstream cognitive and behavioral deficits. Cognitive health implications put humans and missions at risk, and with the upcoming Artemis missions in which female crew will play a major role, advance critical analysis of the neurological and performance responses of male and female rodents to space radiation is vital. Here, we tested the hypothesis that simulated Galactic Cosmic Radiation (GCRSim) exposure disrupts species-typical behavior in mice, including burrowing, rearing, grooming, and nest-building that depend upon hippocampal and medial prefrontal cortex circuitry. Behavior comprises a remarkably well-integrated representation of the biology of the whole animal that informs overall neural and physiological status, revealing functional impairment. We conducted a systematic dose-response analysis of mature (6-month-old) male and female mice exposed to either 5, 15, or 50 cGy 5-ion GCRSim (H, Si, He, O, Fe) at the NASA Space Radiation Laboratory (NSRL). Behavioral performance was evaluated at 72 h (acute) and 91-days (delayed) postradiation exposure. Specifically, species-typical behavior patterns comprising burrowing, rearing, and grooming as well as nest building were analyzed. A Neuroscore test battery (spontaneous activity, proprioception, vibrissae touch, limb symmetry, lateral turning, forelimb outstretching, and climbing) was performed at the acute timepoint to investigate early sensorimotor deficits postirradiation exposure. Nest construction, a measure of neurological and organizational function in rodents, was evaluated using a five-stage Likert scale 'Deacon' score that ranged from 1 (a low score where the Nestlet is untouched) to 5 (a high score where the Nestlet is completely shredded and shaped into a nest). Differential acute responses were observed in females relative to males with respect to species-typical behavior following 15 cGy exposure while delayed responses were observed in female grooming following 50 cGy exposure. Significant sex differences were observed at both timepoints in nest building. No deficits in sensorimotor behavior were observed via the Neuroscore. This study revealed subtle, sexually dimorphic GCRSim exposure effects on mouse behavior. Our analysis provides a clearer understanding of GCR dose effects on species typical, sensorimotor and organizational behaviors at acute and delayed timeframes postirradiation, thereby setting the stage for the identification of underlying cellular and molecular events.

6.
Neurosci Biobehav Rev ; 132: 908-935, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767877

RESUMO

As human space exploration advances to establish a permanent presence beyond the Low Earth Orbit (LEO) with NASA's Artemis mission, researchers are striving to understand and address the health challenges of living and working in the spaceflight environment. Exposure to ionizing radiation, microgravity, isolation and other spaceflight hazards pose significant risks to astronauts. Determining neurobiological and neurobehavioral responses, understanding physiological responses under Central Nervous System (CNS) control, and identifying putative mechanisms to inform countermeasure development are critically important to ensuring brain and behavioral health of crew on long duration missions. Here we provide a detailed and comprehensive review of the effects of spaceflight and of ground-based spaceflight analogs, including simulated weightlessness, social isolation, and ionizing radiation on humans and animals. Further, we discuss dietary and non-dietary countermeasures including artificial gravity and antioxidants, among others. Significant future work is needed to ensure that neural, sensorimotor, cognitive and other physiological functions are maintained during extended deep space missions to avoid potentially catastrophic health and safety outcomes.


Assuntos
Voo Espacial , Ausência de Peso , Animais , Astronautas/psicologia , Encéfalo , Humanos , Fatores de Tempo
7.
NPJ Microgravity ; 7(1): 11, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712627

RESUMO

Ovarian steroids dramatically impact normal homeostatic and metabolic processes of most tissues within the body, including muscle, bone, neural, immune, cardiovascular, and reproductive systems. Determining the effects of spaceflight on the ovary and estrous cycle is, therefore, critical to our understanding of all spaceflight experiments using female mice. Adult female mice (n = 10) were exposed to and sacrificed on-orbit after 37 days of spaceflight in microgravity. Contemporary control (preflight baseline, vivarium, and habitat; n = 10/group) groups were maintained at the Kennedy Space Center, prior to sacrifice and similar tissue collection at the NASA Ames Research Center. Ovarian tissues were collected and processed for RNA and steroid analyses at initial carcass thaw. Vaginal wall tissue collected from twice frozen/thawed carcasses was fixed for estrous cycle stage determinations. The proportion of animals in each phase of the estrous cycle (i.e., proestrus, estrus, metestrus, and diestrus) did not appreciably differ between baseline, vivarium, and flight mice, while habitat control mice exhibited greater numbers in diestrus. Ovarian tissue steroid concentrations indicated no differences in estradiol across groups, while progesterone levels were lower (p < 0.05) in habitat and flight compared to baseline females. Genes involved in ovarian steroidogenic function were not differentially expressed across groups. As ovarian estrogen can dramatically impact multiple non-reproductive tissues, these data support vaginal wall estrous cycle classification of all female mice flown in space. Additionally, since females exposed to long-term spaceflight were observed at different estrous cycle stages, this indicates females are likely undergoing ovarian cyclicity and may yet be fertile.

8.
NPJ Microgravity ; 7(1): 24, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230490

RESUMO

Isolation on Earth can alter physiology and signaling of organs systems, including the central nervous system. Although not in complete solitude, astronauts operate in an isolated environment during spaceflight. In this study, we determined the effects of isolation and simulated microgravity solely or combined, on the inflammatory cytokine milieu of the hippocampus. Adult female wild-type mice underwent simulated microgravity by hindlimb unloading for 30 days in single or social (paired) housing. In hippocampus, simulated microgravity and isolation each regulate a discrete repertoire of cytokines associated with inflammation. Their combined effects are not additive. A model for mitochondrial reactive oxygen species (ROS) quenching via targeted overexpression of the human catalase gene to the mitochondria (MCAT mice), are protected from isolation- and/or simulated microgravity-induced changes in cytokine expression. These findings suggest a key role for mitochondrial ROS signaling in neuroinflammatory responses to spaceflight and prolonged bedrest, isolation, and confinement on Earth.

9.
Cells ; 10(4)2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921854

RESUMO

Long duration spaceflight poses potential health risks to astronauts during flight and re-adaptation after return to Earth. There is an emerging need for NASA to provide successful and reliable therapeutics for long duration missions when capability for medical intervention will be limited. Clinically relevant, human placenta-derived therapeutic stromal cells (PLX-PAD) are a promising therapeutic alternative. We found that treatment of adult female mice with PLX-PAD near the onset of simulated weightlessness by hindlimb unloading (HU, 30 d) was well-tolerated and partially mitigated decrements caused by HU. Specifically, PLX-PAD treatment rescued HU-induced thymic atrophy, and mitigated HU-induced changes in percentages of circulating neutrophils, but did not rescue changes in the percentages of lymphocytes, monocytes, natural killer (NK) cells, T-cells and splenic atrophy. Further, PLX-PAD partially mitigated HU effects on the expression of select cytokines in the hippocampus. In contrast, PLX-PAD failed to protect bone and muscle from HU-induced effects, suggesting that the mechanisms which regulate the structure of these mechanosensitive tissues in response to disuse are discrete from those that regulate the immune- and central nervous system (CNS). These findings support the therapeutic potential of placenta-derived stromal cells for select physiological deficits during simulated spaceflight. Multiple countermeasures are likely needed for comprehensive protection from the deleterious effects of prolonged spaceflight.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Placenta/citologia , Ausência de Peso , Animais , Peso Corporal , Proliferação de Células , Citocinas/metabolismo , Feminino , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais , Sistemas Neurossecretores/patologia , Tamanho do Órgão , Gravidez , Roedores , Estresse Fisiológico , Células Estromais/citologia , Microtomografia por Raio-X
10.
J Med Ethics ; 36(10): 614-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20797979

RESUMO

A multidisciplinary faculty committee designed a curriculum to shape biomedical graduate students into researchers with a high commitment to professionalism and social responsibility and to provide students with tools to navigate complex, rapidly evolving academic and societal environments with a strong ethical commitment. The curriculum used problem-based learning (PBL), because it is active and learner-centred and focuses on skill and process development. Two courses were developed: Scientific Professionalism: Scientific Integrity addressed discipline-specific and broad professional norms and obligations for the ethical practice of science and responsible conduct of research (RCR). Scientific Professionalism: Bioethics and Social Responsibility focused on current ethical and bioethical issues within the scientific profession, and implications of research for society. Each small-group session examined case scenarios that included: (1) learning objectives for professional norms and obligations; (2) key ethical issues and philosophies within each topic area; (3) one or more of the RCR instructional areas; and (4) at least one type of moral reflection. Cases emphasised professional standards, obligations and underlying philosophies for the ethical practice of science, competing interests of stakeholders and oversight of science (internal and external). To our knowledge, this is the first use of a longitudinal, multi-semester PBL course to teach scientific integrity and professionalism. Both faculty and students endorsed the active learning approach for these topics, in contrast to a compliance-based approach that emphasises learning rules and regulations.


Assuntos
Currículo , Educação de Pós-Graduação em Medicina/métodos , Ética Médica/educação , Princípios Morais , Aprendizagem Baseada em Problemas/métodos , Prática Profissional , Temas Bioéticos , Pesquisa Biomédica/educação , Pesquisa Biomédica/ética , Humanos , Aprendizagem Baseada em Problemas/organização & administração , Prática Profissional/normas
11.
Dev Psychobiol ; 51(1): 84-94, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18980217

RESUMO

The study of fetal neurobehavioral development in genetically altered mice promises a significant advance in our understanding of the prenatal origins of developmental disabilities in humans. Despite their importance, little is known about fetal neurobehavioral development in mice. In this study, we observed prenatal behavioral patterns of the C57BL/6J mouse, a common background strain for genetically altered mice, and report their similarity to those observed in the early to mid-gestation human fetus. Fetal offspring from pregnant C57BL/6J dams were observed on the day before birth (E18 of a 19-day gestation). Scoring and analysis of fetal movement included Prechtl's Method for Qualitative Assessment, Interlimb Movement Synchrony, a measure of the temporal relationship between movements of limb pairs, and Behavioral State, quantified through detailed analysis of high and low amplitude limb movements. With the exception of fetal breathing movements, all categories and patterns of behavior typically reported in the early to mid-gestation human fetus were observed in the C57BL/6J mouse fetus. Our results suggest that behavioral analysis of fetal C57BL/6J mice may yield important new insights into early to mid-gestation human behavioral development.


Assuntos
Modelos Animais de Doenças , Desenvolvimento Fetal/fisiologia , Animais , Extremidades/embriologia , Feminino , Idade Gestacional , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Movimento/fisiologia , Gravidez
12.
Sci Rep ; 9(1): 10154, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289284

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

13.
Sci Rep ; 9(1): 4717, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30976012

RESUMO

Interest in space habitation has grown dramatically with planning underway for the first human transit to Mars. Despite a robust history of domestic and international spaceflight research, understanding behavioral adaptation to the space environment for extended durations is scant. Here we report the first detailed behavioral analysis of mice flown in the NASA Rodent Habitat on the International Space Station (ISS). Following 4-day transit from Earth to ISS, video images were acquired on orbit from 16- and 32-week-old female mice. Spaceflown mice engaged in a full range of species-typical behaviors. Physical activity was greater in younger flight mice as compared to identically-housed ground controls, and followed the circadian cycle. Within 7-10 days after launch, younger (but not older), mice began to exhibit distinctive circling or 'race-tracking' behavior that evolved into coordinated group activity. Organized group circling behavior unique to spaceflight may represent stereotyped motor behavior, rewarding effects of physical exercise, or vestibular sensation produced via self-motion. Affording mice the opportunity to grab and run in the RH resembles physical activities that the crew participate in routinely. Our approach yields a useful analog for better understanding human responses to spaceflight, providing the opportunity to assess how physical movement influences responses to microgravity.


Assuntos
Adaptação Fisiológica/fisiologia , Comportamento Animal/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Voo Espacial/métodos , Ausência de Peso
14.
Front Physiol ; 10: 1147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572207

RESUMO

The hindlimb unloading (HU) model has been used extensively to simulate the cephalad fluid shift and musculoskeletal disuse observed in spaceflight with its application expanding to study immune, cardiovascular and central nervous system responses, among others. Most HU studies are performed with singly housed animals, although social isolation also can substantially impact behavior and physiology, and therefore may confound HU experimental results. Other HU variants that allow for paired housing have been developed although no systematic assessment has been made to understand the effects of social isolation on HU outcomes. Hence, we aimed to determine the contribution of social isolation to tissue responses to HU. To accomplish this, we developed a refinement to the traditional NASA Ames single housing HU system to accommodate social housing in pairs, retaining desirable features of the original design. We conducted a 30-day HU experiment with adult, female mice that were either singly or socially housed. HU animals in both single and social housing displayed expected musculoskeletal deficits versus housing matched, normally loaded (NL) controls. However, select immune and hypothalamic-pituitary-adrenal (HPA) axis responses were differentially impacted by the HU social environment relative to matched NL controls. HU led to a reduction in % CD4+ T cells in singly housed, but not in socially housed mice. Unexpectedly, HU increased adrenal gland mass in socially housed but not singly housed mice, while social isolation increased adrenal gland mass in NL controls. HU also led to elevated plasma corticosterone levels at day 30 in both singly and socially housed mice. Thus, musculoskeletal responses to simulated weightlessness are similar regardless of social environment with a few differences in adrenal and immune responses. Our findings show that combined stressors can mask, not only exacerbate, select responses to HU. These findings further expand the utility of the HU model for studying possible combined effects of spaceflight stressors.

15.
Behav Neurosci ; 122(1): 224-32, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18298265

RESUMO

Pregnant rats were flown on the NASA Space Shuttle during the early developmental period of their fetuses' vestibular apparatus and onset of vestibular function. The authors report that prenatal spaceflight exposure shapes vestibular-mediated behavior and central morphology. Postflight testing revealed (a) delayed onset of body righting responses, (b) cardiac deceleration (bradycardia) to 70 degrees head-up roll, (c) decreased branching of gravistatic afferent axons, but (d) no change in branching of angular acceleration receptor projections with comparable synaptogenesis of the medial vestibular nucleus in flight relative to control fetuses. Kinematic analyses of the dams' on-orbit behavior suggest that, although the fetal otolith organs are unloaded in microgravity, the fetus' semicircular canals receive high levels of stimulation during longitudinal rotations of the mother's weightless body. Behaviorally derived stimulation from maternal movements may be a significant factor in studies of vestibular sensory development. Taken together, these studies provide evidence that gravity and angular acceleration shape prenatal organization and function within the mammalian vestibular system.


Assuntos
Sensação Gravitacional/fisiologia , Efeitos Tardios da Exposição Pré-Natal , Voo Espacial , Vestíbulo do Labirinto/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Fenômenos Biomecânicos , Embrião de Mamíferos , Feminino , Frequência Cardíaca Fetal/fisiologia , Gravidez , Ratos , Ratos Sprague-Dawley , Sinapses/ultraestrutura , Vestíbulo do Labirinto/ultraestrutura
16.
J Appl Physiol (1985) ; 102(6): 2186-93, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17317876

RESUMO

Exposure of rat dams to hypergravity during pregnancy is associated with increased pup mortality, reduced food intake, and decreased rates of glucose oxidation and lipogenesis in mammary tissue. We hypothesized that increased pup mortality is due to changes in maternal metabolism and not to reduced food intake of dams. Effects of hypergravity on rate of glucose oxidation and lipogenesis in mammary, liver, and adipose tissue were measured in rat dams centrifuged at 2.0 G [hypergravity (HG)], kept at 1.0 G (control), or fed to match the intake of HG rats (pair fed) from gestation day 11 (G11) until G21 or postpartum day 3 (P3). Body weight, percent body fat, metabolizable energy, and nitrogen balance were significantly less in HG dams compared with controls (P<0.05); however, these factors were not different between HG and pair-fed dams. By P3, 100% of control and pair-fed pups survived, while only 49% of HG pups survived. At G21, rates of glucose oxidation and lipogenesis in mammary and adipose tissue were less in HG than in control and pair-fed dams (P<0.1 and P<0.05). In liver, at G21, the rate of lipogenesis was greater in HG than control and pair-fed dams (P<0.01); at P3, lipogenesis was greater in control than HG and pair-fed dams (P<0.05). Gene expression of ATP citrate lyase, acetyl-CoA carboxylase, and fatty acid synthase increased in liver from pregnancy to lactation in control and pair-fed dams but not HG dams. Thus reduced food intake and body mass due to hypergravity exposure cannot explain the dramatic decrease in HG pup survival.


Assuntos
Animais Recém-Nascidos/fisiologia , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Glucose/metabolismo , Hipergravidade , Insulina/metabolismo , Lactação/fisiologia , Animais , Feminino , Ratos , Ratos Sprague-Dawley
17.
NPJ Microgravity ; 3: 5, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649627

RESUMO

NASA's Space Biology and Human Research Program entities have recently spearheaded communications both internally and externally to coordinate the agency's translational research efforts. In this paper, we strongly advocate for translational research at NASA, provide recent examples of NASA sponsored early-stage translational research, and discuss options for a path forward. Our overall objective is to help in stimulating a collaborative research across multiple disciplines and entities that, working together, will more effectively and more rapidly achieve NASA's goals for human spaceflight.

18.
Int J Dev Neurosci ; 62: 56-62, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28330827

RESUMO

DNA methylation (addition of methyl groups to cytosines) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could contribute to the long-term effects of intrauterine exposure to maternal stress on offspring behavior. Here, we measured methylation of DNA associated with the Brain-derived neurotrophic factor (Bdnf) gene, a gene important in development and plasticity, and telomere length in the brains of adult rat male and female offspring whose mothers were exposed to unpredictable and variable stressors throughout gestation. Males exposed to prenatal stress had greater methylation (Bdnf IV) in the medial prefrontal cortex (mPFC) compared to non-stressed male controls and stressed females. Further, prenatally-stressed animals had shorter telomeres than controls in the mPFC. Together findings indicate a long-term impact of prenatal stress on brain DNA methylation and telomere biology with relevance for behavioral and health outcomes, and contribute to a growing literature linking stress to intergenerational molecular changes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Metilação de DNA/genética , Epigênese Genética/fisiologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Estresse Psicológico , Homeostase do Telômero/fisiologia , Análise de Variância , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Masculino , Gravidez , Resultado da Gravidez , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia
19.
Behav Neurosci ; 120(6): 1308-14, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17201476

RESUMO

Plasma catecholamines in newborn rats (0-2 hr old) were analyzed following vaginal birth, cesarean section with simulated labor contractions, or cesarean section without labor contractions. Upon delivery, pups were exposed to key elements of the rat's natural birth process, that is, umbilical cord occlusion, tactile stimulation, and cooling. Only pups exposed to actual or simulated labor showed an immediate rise in norepinephrine and epinephrine. Initial postpartum respiratory frequencies were higher in vaginal than in cesarean delivered pups and, in all groups, inversely correlated with catecholamine titers, suggesting respiratory distress or transient tachypnea at lower catecholamine levels. These findings establish a rat model for analyzing effects of labor on neonatal adaptive response during the transition from prenatal to postnatal life.


Assuntos
Animais Recém-Nascidos/sangue , Catecolaminas/sangue , Cesárea , Parto Obstétrico , Respiração , Análise de Variância , Animais , Feminino , Masculino , Gravidez , Ratos , Fatores de Tempo
20.
Adv Space Res ; 32(8): 1483-90, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-15000095

RESUMO

Sustaining life beyond Earth on either space stations or other planets will require a clear understanding of how the space environment affects key phases of mammalian reproduction and development. Pregnancy, parturition (birth) and the early development of offspring are complex processes essential for successful reproduction and the proliferation of mammalian species. While no mammal has yet undergone birth within the space environment, studies spanning the gravity continuum from 0- to 2-g are revealing startling insights into how reproduction and development may proceed under gravitational conditions deviating from those typically experienced on Earth. In this report, I review studies of pregnant Norway rats and their offspring flown in microgravity onboard the NASA Space Shuttle throughout the period corresponding to mid- to late gestation, and analogous studies of pregnant rats exposed to hypergravity (hg) onboard the NASA Ames Research Center 24-ft centrifuge. Studies of postnatal rats flown in space or exposed to centrifugation are reviewed. Although many important questions remain unanswered, the available data suggest that numerous aspects of pregnancy, birth and early mammalian development can proceed under altered gravity conditions.


Assuntos
Comportamento Animal , Hipergravidade , Prenhez , Voo Espacial , Ausência de Peso , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Centrifugação , Feminino , Fertilização , Comportamento Materno , Parto , Gravidez , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA