Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Glia ; 63(9): 1507-21, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25980474

RESUMO

The fine-tuning of synaptic transmission by astrocyte signaling is crucial to CNS physiology. However, how exactly astroglial excitability and gliotransmission are affected in several neuropathologies, including epilepsy, remains unclear. Here, using a chronic model of temporal lobe epilepsy (TLE) in rats, we found that astrocytes from astrogliotic hippocampal slices displayed an augmented incidence of TTX-insensitive spontaneous slow Ca(2+) transients (STs), suggesting a hyperexcitable pattern of astroglial activity. As a consequence, elevated glutamate-mediated gliotransmission, observed as increased slow inward current (SICs) frequency, up-regulates the probability of neurotransmitter release in CA3-CA1 synapses. Selective blockade of spontaneous astroglial Ca(2+) elevations as well as the inhibition of purinergic P2Y1 or mGluR5 receptors relieves the abnormal enhancement of synaptic strength. Moreover, mGluR5 blockade eliminates any synaptic effects induced by P2Y1R inhibition alone, suggesting that the Pr modulation via mGluR occurs downstream of P2Y1R-mediated Ca(2+)-dependent glutamate release from astrocyte. Our findings show that elevated Ca(2+)-dependent glutamate gliotransmission from hyperexcitable astrocytes up-regulates excitatory neurotransmission in epileptic hippocampus, suggesting that gliotransmission should be considered as a novel functional key in a broad spectrum of neuropathological conditions.


Assuntos
Astrócitos/fisiologia , Encéfalo/fisiopatologia , Cálcio/metabolismo , Epilepsia do Lobo Temporal/fisiopatologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Cátions Bivalentes/metabolismo , Doença Crônica , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/patologia , Imuno-Histoquímica , Excitação Neurológica , Masculino , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/patologia , Transmissão Sináptica/efeitos dos fármacos , Técnicas de Cultura de Tecidos
2.
PLoS One ; 19(3): e0298208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427650

RESUMO

The taiep rat is a tubulin mutant with an early hypomyelination followed by progressive demyelination of the central nervous system due to a point mutation in the Tubb4a gene. It shows clinical, radiological, and pathological signs like those of the human leukodystrophy hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC). Taiep rats had tremor, ataxia, immobility episodes, epilepsy, and paralysis; the acronym of these signs given the name to this autosomal recessive trait. The aim of this study was to analyze the characteristics of somatosensory evoked potentials (SSEPs) and motor evoked potentials (MEPs) in adult taiep rats and in a patient suffering from H-ABC. Additionally, we evaluated the effects of 4-aminopyridine (4-AP) on sensory responses and locomotion and finally, we compared myelin loss in the spinal cord of adult taiep and wild type (WT) rats using immunostaining. Our results showed delayed SSEPs in the upper and the absence of them in the lower extremities in a human patient. In taiep rats SSEPs had a delayed second negative evoked responses and were more susceptible to delayed responses with iterative stimulation with respect to WT. MEPs were produced by bipolar stimulation of the primary motor cortex generating a direct wave in WT rats followed by several indirect waves, but taiep rats had fused MEPs. Importantly, taiep SSEPs improved after systemic administration of 4-AP, a potassium channel blocker, and this drug induced an increase in the horizontal displacement measured in a novelty-induced locomotor test. In taiep subjects have a significant decrease in the immunostaining of myelin in the anterior and ventral funiculi of the lumbar spinal cord with respect to WT rats. In conclusion, evoked potentials are useful to evaluate myelin alterations in a leukodystrophy, which improved after systemic administration of 4-AP. Our results have a translational value because our findings have implications in future medical trials for H-ABC patients or with other leukodystrophies.


Assuntos
Doenças Desmielinizantes , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Substância Branca , Ratos , Humanos , Animais , Ratos Mutantes , 4-Aminopiridina/farmacologia , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/genética , Cerebelo , Gânglios da Base , Potenciais Evocados , Caminhada , Atrofia
3.
Eur J Neurosci ; 33(8): 1483-92, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21395864

RESUMO

Astrocytes exhibit spontaneous calcium oscillations that could induce the release of glutamate as gliotransmitter in rat hippocampal slices. However, it is unknown whether this spontaneous release of astrocytic glutamate may contribute to determining the basal neurotransmitter release probability in central synapses. Using whole-cell recordings and Ca(2+) imaging, we investigated the effects of the spontaneous astrocytic activity on neurotransmission and synaptic plasticity at CA3-CA1 hippocampal synapses. We show here that the metabolic gliotoxin fluorocitrate (FC) reduces the amplitude of evoked excitatory postsynaptic currents and increases the paired-pulse facilitation, mainly due to the reduction of the neurotransmitter release probability and the synaptic potency. FC also decreased intracellular Ca(2+) signalling and Ca(2+) -dependent glutamate release from astrocytes. The addition of glutamine rescued the effects of FC over the synaptic potency; however, the probability of neurotransmitter release remained diminished. The blockage of group I metabotropic glutamate receptors mimicked the effects of FC on the frequency of miniature synaptic responses. In the presence of FC, the Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N ',N '-tetra-acetate or group I metabotropic glutamate receptor antagonists, the excitatory postsynaptic current potentiation induced by the spike-timing-dependent plasticity protocol was blocked, and it was rescued by delivering a stronger spike-timing-dependent plasticity protocol. Taken together, these results suggest that spontaneous glutamate release from astrocytes contributes to setting the basal probability of neurotransmitter release via metabotropic glutamate receptor activation, which could be operating as a gain control mechanism that regulates the threshold of long-term potentiation. Therefore, endogenous astrocyte activity provides a novel non-neuronal mechanism that could be critical for transferring information in the central nervous system.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Citratos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Glutamina/metabolismo , Glutamina/farmacologia , Potenciação de Longa Duração/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
4.
Synapse ; 63(6): 502-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19224601

RESUMO

During development, regulation of the strength of synaptic transmission plays a central role in the formation of mammalian brain circuitries. In taiep rat, a neurological mutant with severe reactive astrogliosis and demyelination, we have described alterations in the synaptic transmission in central neurons, characterized by asynchronous excitatory postsynaptic currents ((ASYN)EPSCs), because of delayed neurotransmitter release. This hippocampal synaptic dysfunction has been described in juvenile mutants, concomitantly with the appearance of their main glial alterations. However, it is unknown whether this abnormal synaptic activity is correlated with some alterations of synaptic maturation during the postnatal development. Using intracellular electrophysiological recordings and immunohistochemistry assays, we studied the maturation of CA3-CA1 synapses in taiep rats. In taiep, the number of (ASYN)EPSCs evoked by conventional stimulation of Schaffer collaterals increases with age (P7-P30) and can be evoked by stimulation of single fiber. The amplitude and frequency of spontaneous EPSC (sEPSC) increased during the postnatal development in both control and taiep rats. However, in taiep, the increase of sEPSC frequency was significantly higher than in the control rats. The frequency of miniature EPSC (mEPSC) increased over the studied age range, without differences between taiep and control rats. In both control and taiep groups, the synaptophysin immunostaining (SYP-IR) in the stratum radiatum of CA1 region was significantly lower in the juvenile (P30) than in the neonatal (P10) rats, suggesting that synaptic pruning is normally occurring in taiep, even when SYP-IR was higher in taiep than control in both ages studied. These results suggest that, in taiep mutants, the asynchronic transmission is due to a dysfunction in the glutamate release mechanisms that progressively increases during development, which is not attributable to the existence of aberrant synaptic contacts. Synapse 63:502-509, 2009. (c) 2009 Wiley-Liss, Inc.


Assuntos
Química Encefálica/genética , Ácido Glutâmico/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/genética , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/genética , Hipocampo/fisiopatologia , Mutação/genética , Ratos , Ratos Mutantes , Ratos Sprague-Dawley , Regulação para Cima/genética
5.
Brain Res ; 1067(1): 78-84, 2006 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-16360123

RESUMO

The taiep rat is a myelin mutant with an initial hypomyelination, followed by a progressive demyelination of the CNS. The neurological correlates start with tremor, followed by ataxia, immobility episodes, epilepsy and paralysis. The optic nerve, an easily-isolable central tract fully myelinated by oligodendrocytes, is a suitable preparation to evaluate the developmental impairment of central myelin. We examined the ontogenic development of optic nerve compound action potentials (CAP) throughout the first 6 months of life of control and taiep rats. Control optic nerves (ON) develop CAPs characterized by three waves. Along the first month, the CAPs of taiep rats showed a delayed maturation, with lower amplitudes and longer latencies than controls; at P30, the conduction velocity has only a third of the normal value. Later, as demyelination proceeds, the conduction velocity of taiep ONs begins to decrease and CAPs undergo a gradual temporal dispersion. CAPs of control and taiep showed differences in their pharmacological sensitivity to TEA and 4-AP, two voltage dependent K+ channel-blockers. As compared with TEA, 4-AP induced a significant increase of the amplitudes and a remarkable broadening of CAPs. After P20, unlike controls, the greater sensitivity to 4-AP exhibited by taiep ONs correlates with the detachment and retraction of paranodal loops suggesting that potassium conductances could regulate the excitability as demyelination of CNS axons progresses. It is concluded that the taiep rat, a long-lived mutant, provides a useful model to study the consequences of partial demyelination and the mechanisms by which glial cells regulate the molecular organization and excitability of axonal membranes during development and disease.


Assuntos
Potenciais de Ação/fisiologia , Doenças do Sistema Nervoso Central/fisiopatologia , Bainha de Mielina/genética , Nervo Óptico/fisiopatologia , Animais , Técnicas In Vitro , Bainha de Mielina/ultraestrutura , Nervo Óptico/ultraestrutura , Ratos , Ratos Mutantes , Ratos Sprague-Dawley
6.
Brain Res ; 964(1): 144-52, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12573523

RESUMO

PURPOSE: To study the histology and the physiological function of the retina in the neurological myelin mutant, taiep rats during the postnatal developmental period (P20-P360). METHODS: Electroretinography (ERG) was applied to evaluate intensity dependence and spectral sensitivity of the responses to light. Retinal histology, morphometry, and immunocytochemistry were used to characterize the structure of the retina, with particular emphasis on the Müller (glial) cells. RESULTS: In the taiep rats of all ages studied, the scotopic ERG showed normal a- and b-wave amplitudes and latencies; likewise, the scotopic spectral sensitivity function was the same for control and taiep animals, with a maximal sensitivity (lambda(max)) at 500 nm. However, in adult taiep rats (P90 to P360) a secondary cornea-positive wave ('b(2)') was observed in response to high stimulus intensities, which never occurred in controls. This correlated with the observation that in the photopic ERG responses of the taiep rats, the b-wave was reduced in amplitude, and was followed by a rapid cornea-negative after-potential. After 1 year of life, in taiep rats the outer plexiform layer (OPL) became slightly thinner and the inner plexiform/ganglion cell layers (IPL/GCL) appeared to be swollen, and increased in thickness; in addition, the number of retinal neurons (particularly, of photoreceptor cells) slightly decreased. Increased GFAP immunoreactivity revealed a hypertrophy and reactivity of the Müller cells in 1-year-old taiep rats. CONCLUSIONS: The present results suggest the occurrence of a relatively mild and slowly progressing neural retinal alteration in taiep rats, which becomes histologically and functionally evident at the end of the first year of life, and mainly affects the circuit(s) of the photopic ON-response. It is speculated that this alteration is due to missing/altered signals from demyelinated optic nerve.


Assuntos
Bainha de Mielina/metabolismo , Degeneração Neural/metabolismo , Neuroglia/metabolismo , Nervo Óptico/crescimento & desenvolvimento , Retina/crescimento & desenvolvimento , Doenças Retinianas/metabolismo , Adaptação Ocular/fisiologia , Fatores Etários , Animais , Eletrorretinografia , Proteína Glial Fibrilar Ácida , Imuno-Histoquímica , Potenciais da Membrana/fisiologia , Bainha de Mielina/genética , Bainha de Mielina/patologia , Degeneração Neural/genética , Degeneração Neural/patologia , Neuroglia/patologia , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Estimulação Luminosa , Células Fotorreceptoras/crescimento & desenvolvimento , Células Fotorreceptoras/patologia , Células Fotorreceptoras/fisiopatologia , Valor Preditivo dos Testes , Ratos , Ratos Mutantes , Retina/metabolismo , Retina/patologia , Doenças Retinianas/genética , Doenças Retinianas/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
7.
Brain Res Dev Brain Res ; 153(2): 197-202, 2004 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-15527887

RESUMO

There is increasing evidence suggesting that glial cells play a crucial role in the formation and maturation of neural circuits. However, little is known about the effects of glial alterations on the establishment of functional circuitry in vivo during the development. The taiep rat, a long-lived neurological mutant characterized by early astrogliosis and demyelination affecting selectively the CNS, provides an interesting model to study the glia-neuron interaction in situ. In the present study, we evaluated the functional development of segmental neural circuits recording the monosynaptic reflex responses (MSR) in the isolated spinal cord of neonatal taiep rats. To evaluate the developmental changes during the first two postnatal weeks, we measured the latency of MSR, the magnitude of depression to paired pulses and the time course of post-tetanic recovery. During the early postnatal period, the MSR of control rats reduced their latency and decreased their sensitivity to depression, as a function of age. By contrast, the MSR of taiep rats failed to develop further from neonatal stage. Near the end of the second postnatal week, the MSR latencies were still prolonged, and the MSR showed a significantly stronger paired pulse depression, and higher post-tetanic recovery times than the age-matched controls. The lack of MSR maturation in taiep rats suggests an early alteration of functional mechanisms underlying the maturation of the spinal reflexes, probably due to the characteristic glial dysfunction(s) of this mutant.


Assuntos
Mutação/fisiologia , Neuroglia/fisiologia , Reflexo Monosináptico/fisiologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/fisiologia , Animais , Animais Recém-Nascidos/fisiologia , Estimulação Elétrica , Técnicas In Vitro , Condução Nervosa/fisiologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley , Raízes Nervosas Espinhais/fisiologia , Transmissão Sináptica/fisiologia
8.
Front Cell Neurosci ; 8: 200, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25100948

RESUMO

Kindling, one of the most used models of experimental epilepsy is based on daily electrical stimulation in several brain structures. Unlike the classic or slow kindling protocols (SK), the rapid kindling types (RK) described until now require continuous stimulation at suprathreshold intensities applied directly to the same brain structure used for subsequent electrophysiological and immunohistochemical studies, usually the hippocampus. However, the cellular changes observed in these rapid protocols, such as astrogliosis and neuronal loss, could be due to experimental manipulation more than to epileptogenesis-related alterations. Here, we developed a new RK protocol in order to generate an improved model of temporal lobe epilepsy (TLE) which allows gradual progression of the epilepsy as well as obtaining an epileptic hippocampus, thus avoiding direct surgical manipulation and electric stimulation over this structure. This new protocol consists of basolateral amygdala (BLA) stimulation with 10 trains of biphasic pulses (10 s; 50 Hz) per day with 20 min-intervals, during 3 consecutive days, using a subconvulsive and subthreshold intensity, which guarantees tissue integrity. The progression of epileptic activity was evaluated in freely moving rats through electroencephalographic (EEG) recordings from cortex and amygdala, accompanied with synchronized video recordings. Moreover, we assessed the effectiveness of RK protocol and the establishment of epilepsy by evaluating cellular alterations of hippocampal slices from kindled rats. RK protocol induced convulsive states similar to SK protocols but in 3 days, with persistently lowered threshold to seizure induction and epileptogenic-dependent cellular changes in amygdala projection areas. We concluded that this novel RK protocol introduces a new variant of the chronic epileptogenesis models in freely moving rats, which is faster, highly reproducible and causes minimum cell damage with respect to that observed in other experimental models of epilepsy.

9.
J Neurosci Res ; 85(1): 223-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17086546

RESUMO

For the taiep rat, a neurological mutant with severe astrogliosis secondary to demyelination, we have described alterations in spinal cord synaptic transmission. Asynchronous responses result from phasic action potential-derived glutamate release in this mutant. To evaluate whether this anomalous transmission is also produced in other regions of the taiep CNS and whether its nature involves a presynaptic or postsynaptic disruption, we studied the CA3-CA1 hippocampal synapses. Excitatory postsynaptic currents (EPSC) evoked by stimulation of Schaffer collaterals were recorded from CA1 pyramidal cells on picrotoxin-treated slices. Initial fast and time-locked EPSCs were evoked by conventional stimulation in both control and taiep neurons, showing similar latency and amplitude values unimodally distributed. In a high percentage of taiep neurons (47%), the initial EPSC was frequently followed by additional asynchronous synaptic currents (EPSC(ASYN)) with latencies ranging from 10 to 300 msec. As with initial EPSCs, EPSC(ASYN) were action potential dependent, sensitive to tetrodotoxin, and blocked by D-2-amino-5-phosphonovaleric acid and 6-cyano-7-nitroquinoxaline-2,3-dione. The occurrence probability of these events decayed monoexponentially as a function of poststimulus time. The elevation of extracellular Ca(2+) induced a reduction of amplitudes and a rate increase of EPSC(ASYN), in parallel with a reduction of paired pulse facilitation of initial EPSCs. The presynaptic fiber volley, extracellularly recorded, showed no significant differences between groups, with similar mean values of area and decay time. These findings in hippocampal circuitry suggest that, in taiep, the asynchronous evoked activity represents a rather generalized phenotype of the glutamatergic synapses and that EPSC(ASYN) seems to be determined by presynaptic alterations.


Assuntos
Potenciais Pós-Sinápticos Excitadores/genética , Hipocampo/citologia , Células Piramidais/fisiologia , Sinapses/genética , Transmissão Sináptica/genética , Animais , Animais Recém-Nascidos , Cálcio/farmacologia , Relação Dose-Resposta à Radiação , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Técnicas In Vitro , Técnicas de Patch-Clamp/métodos , Células Piramidais/efeitos da radiação , Ratos , Ratos Mutantes , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Sinapses/efeitos da radiação , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/efeitos da radiação
10.
Exp Brain Res ; 156(1): 104-10, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14689131

RESUMO

Maturation and differentiation of electrical properties of neurons and synaptic transmission are modulated by neuronal interaction. In vitro experiments have shown that these processes also seem to be regulated by signals from non-neuronal elements such as glial cells. It is not known, however, whether glial alterations in intact neural networks may also affect the maturation of electrical properties and synaptic transmission during development. We used the taiep rat, a neurological mutant with a progressive demyelination and astrogliosis, as an experimental model to study the postnatal development of motoneurons in an altered glial environment. Using the patch-clamp technique, we made intracellular recording from motoneurons of Rexed's lamina IX in spinal cord slices of neonatal rats (postnatal day P4-P10). The electrical properties of normal motoneurons changed significantly with age, showing decreasing input resistance (R(in)) and increasing membrane capacity (C(m)). The rheobase increased with age, accompanied by an increase of the amplitude and a decrease of the duration of action potentials (APs). In contrast, mutant neurons showed no age-dependent changes of R(in), C(m), or AP characteristics. After blocking inhibitory transmission, intralaminar bipolar stimulation elicited, in both control and taiep motoneurons, fast glutamatergic excitatory postsynaptic potentials (EPSPs). Two types of taiep motoneurons were identified according to the temporal patterns of synaptic responses; (1). taiep(SYN) neurons, which showed no significant differences to control motoneurons, and (2). taiep(ASYN) neurons, in which the initial EPSP was followed by a variable number of delayed, asynchronous EPSP responses (for up to 300 ms). All these electrophysiological findings suggest that the mutation in taiep rats interfered with the development of the electrical properties of neurons and with the maturation of synaptic transmission, probably due to alterations in the neuron-glia interactions.


Assuntos
Doenças Desmielinizantes/fisiopatologia , Gliose/fisiopatologia , Neurônios Motores/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Comunicação Celular/fisiologia , Membrana Celular/genética , Membrana Celular/fisiologia , Doenças Desmielinizantes/complicações , Doenças Desmielinizantes/genética , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Gliose/complicações , Gliose/genética , Técnicas In Vitro , Região Lombossacral , Neurônios Motores/ultraestrutura , Neuroglia/fisiologia , Neurônios Aferentes/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Mutantes , Ratos Sprague-Dawley , Medula Espinal/fisiologia , Medula Espinal/fisiopatologia , Transmissão Sináptica/genética
11.
Glia ; 45(4): 338-45, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14966865

RESUMO

The structural and functional similarities between Müller cells and oligodendrocytes prompted the present study of the electrophysiological properties of Müller (glia) cells obtained from the retinae of control and myelin mutant taiep rats during the postnatal developmental period (P12-P180). The whole-cell configuration of the patch-clamp technique was used to characterize the general properties and the K+ currents from dissociated Müller cells. During the first 3 weeks of life, a decrease of the membrane resistance and an increase of the membrane potential were observed in Müller cells from both control and taiep rats. However, Müller cells from taiep rats never achieved the very negative membrane potential (-50 mV vs -80 mV) and the low membrane resistance characteristic for control cells. Furthermore, Müller cells displayed increased inward and outward K+ currents during postnatal development up to P30/60 in controls; however, in taiep rats, this increase ceased at P20/30, and low-amplitude currents persisted into adulthood. These results provide first evidence of physiological changes in retinal Müller cells as a consequence of a myelin mutation causing a progressive deterioration of the central nervous system (CNS) due to a disturbance of the microtubule network of oligodendrocytes. We hypothesize that the progressive dysmyelination process of the optic nerve, accompanied by functional deficits of retinal neurons (e.g., ganglion cells), induces physiological alterations of Müller cells.


Assuntos
Bainha de Mielina/genética , Neuroglia/fisiologia , Retina/fisiologia , Animais , Eletrofisiologia , Feminino , Masculino , Potenciais da Membrana/fisiologia , Neuroglia/citologia , Ratos , Ratos Mutantes , Ratos Sprague-Dawley , Retina/citologia
12.
Biol. Res ; 32(4): 253-62, 1999.
Artigo em Inglês | LILACS | ID: lil-264238

RESUMO

Taiep is an autosomal recessive mutant rat that shows a highly hypomyelinated central nervous system (CNS). Oligodendrocytes accumulate microtubules (MTs) in association with endoplasmic reticulum (ER) membranes forming MT-ER complexes. The microtubular defect in oligodendrocytes, the abnormal formation of CNS myelin and the astrocytic reaction were characterized by immunocytochemical and ultrastructural methods during the first year of life. Optic nerves of both control and taiep rats were processed by the immunoperoxidase method using antibodies against tubulin, myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP). Taiep oligodendrocytes are strongly immunoreactive against tubulin, indicative of a significant accumulation of microtubules. Early differentiated oligodendrocytes observed with electron microscopy show that MT-ER complexes are mainly present in the cell body. This defect increases during the first year of life; oligodendrocytes show large MT-ER complexes projected within oligodendrocyte processes. Using anti-MBP, there was a progressive reduction of immunolabeling in the myelin sheaths as taiep rats grew older. Ultrastructural analysis revealed severely dysmyelinated axons with a frequently collapsed periaxonal collar. However, through age the myelin sheath became gradually infiltrated by MTs, suggesting their contribution to premature loss of myelin in the taiep rat. Axons of one-year-old taiep rats were severely demyelinated. Modifications in astrocytes revealed by the GFAP antibody showed a strong hypertrophy with increased immunostaining in their processes. As demyelination of axons progressed, taiep rats developed a strong astrogliosis. The present findings suggest that in taiep rats the early abnormal myelination of axons affects the adequate maintenance of myelin, leading to a progressive loss of myelin components and severe astrogliosis, features that should be considered in the pathogenesis of dysmyelinating diseases


Assuntos
Animais , Masculino , Ratos , Astrócitos/ultraestrutura , Doenças Desmielinizantes/patologia , Microtúbulos/ultraestrutura , Oligodendroglia/ultraestrutura , Nervo Óptico/ultraestrutura , Astrócitos/ultraestrutura , Estudos de Casos e Controles , Técnicas Imunoenzimáticas , Imuno-Histoquímica , Ratos Mutantes , Ratos Sprague-Dawley , Tubulina (Proteína)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA