Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Cell Biol ; 9(9): 1081-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17704767

RESUMO

Neurogenesis - the formation of new neurons in the adult brain - is considered to be one of the mechanisms by which the brain maintains its lifelong plasticity in response to extrinsic and intrinsic changes. The mechanisms underlying the regulation of neurogenesis are largely unknown. Here, we show that Toll-like receptors (TLRs), a family of highly conserved pattern-recognizing receptors involved in neural system development in Drosophila and innate immune activity in mammals, regulate adult hippocampal neurogenesis. We show that TLR2 and TLR4 are found on adult neural stem/progenitor cells (NPCs) and have distinct and opposing functions in NPC proliferation and differentiation both in vitro and in vivo. TLR2 deficiency in mice impaired hippocampal neurogenesis, whereas the absence of TLR4 resulted in enhanced proliferation and neuronal differentiation. In vitro studies further indicated that TLR2 and TLR4 directly modulated self-renewal and the cell-fate decision of NPCs. The activation of TLRs on the NPCs was mediated via MyD88 and induced PKCalpha/beta-dependent activation of the NF-kappaB signalling pathway. Thus, our study identified TLRs as players in adult neurogenesis and emphasizes their specified and diverse role in cell renewal.


Assuntos
Drosophila melanogaster , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Neurônios/fisiologia , Células-Tronco/fisiologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Diferenciação Celular , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/fisiologia , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Neurônios/citologia , Células-Tronco/citologia , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
2.
Brain Behav Immun ; 26(1): 159-69, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21925261

RESUMO

Accidental organophosphate poisoning resulting from environmental or occupational exposure, as well as the deliberate use of nerve agents on the battlefield or by terrorists, remain major threats for multi-casualty events, with no effective therapies yet available. Even transient exposure to organophosphorous compounds may lead to brain damage associated with microglial activation and to long-lasting neurological and psychological deficits. Regulation of the microglial response by adaptive immunity was previously shown to reduce the consequences of acute insult to the central nervous system (CNS). Here, we tested whether an immunization-based treatment that affects the properties of T regulatory cells (Tregs) can reduce brain damage following organophosphate intoxication, as a supplement to the standard antidotal protocol. Rats were intoxicated by acute exposure to the nerve agent soman, or the organophosphate pesticide, paraoxon, and after 24 h were treated with the immunomodulator, poly-YE. A single injection of poly-YE resulted in a significant increase in neuronal survival and tissue preservation. The beneficial effect of poly-YE treatment was associated with specific recruitment of CD4(+) T cells into the brain, reduced microglial activation, and an increase in the levels of brain derived neurotrophic factor (BDNF) in the piriform cortex. These results suggest therapeutic intervention with poly-YE as an immunomodulatory supplementary approach against consequences of organophosphate-induced brain damage.


Assuntos
Encefalopatias/induzido quimicamente , Encefalopatias/tratamento farmacológico , Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/toxicidade , Fatores Imunológicos/farmacologia , Fármacos Neuroprotetores/farmacologia , Compostos Organofosforados/toxicidade , Peptídeos/farmacologia , Animais , Encéfalo/patologia , Encefalopatias/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Proliferação de Células , Citometria de Fluxo , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Paraoxon/antagonistas & inibidores , Paraoxon/toxicidade , Ratos , Ratos Sprague-Dawley , Soman/antagonistas & inibidores , Soman/toxicidade , Linfócitos T/efeitos dos fármacos
3.
Sci Rep ; 3: 1254, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23409245

RESUMO

Toll-like receptors (TLRs) are traditionally associated with immune-mediated host defense. Here, we ascribe a novel extra-immune, hypothalamic-associated function to TLR2, a TLR-family member known to recognize lipid components, in the protection against obesity. We found that TLR2-deficient mice exhibited mature-onset obesity and susceptibility to high-fat diet (HFD)-induced weight gain, via modulation of food intake. Age-related obesity was still evident in chimeric mice, carrying comparable TLR2(+) immune cells, suggesting a non-hematopoietic-related involvement of this receptor. TLR2 was up-regulated with age or HFD in pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus, a brain area participating in central-metabolic regulation, possibly modulating the hypothalamic-anorexigenic peptide, α-melanocyte-stimulating hormone (α-MSH). Direct activation of TLR2 in a hypothalamic-neuronal cell-line via its known ligands, further supports its capacity to mediate non-immune related metabolic regulation. Thus, our findings identify TLR2 expressed by hypothalamic neurons as a potential novel regulator of age-related weight gain and energy expenditure.


Assuntos
Envelhecimento , Hipotálamo/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Linhagem Celular , Dieta Hiperlipídica , Metabolismo Energético , Ligantes , Camundongos , Obesidade/etiologia , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , alfa-MSH/metabolismo
4.
PLoS One ; 6(8): e22374, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829620

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing fatal neurodegenerative disorder characterized by the selective death of motor neurons (MN) in the spinal cord, and is associated with local neuroinflammation. Circulating CD4(+) T cells are required for controlling the local detrimental inflammation in neurodegenerative diseases, and for supporting neuronal survival, including that of MN. T-cell deficiency increases neuronal loss, while boosting T cell levels reduces it. Here, we show that in the mutant superoxide dismutase 1 G93A (mSOD1) mouse model of ALS, the levels of natural killer T (NKT) cells increased dramatically, and T-cell distribution was altered both in lymphoid organs and in the spinal cord relative to wild-type mice. The most significant elevation of NKT cells was observed in the liver, concomitant with organ atrophy. Hepatic expression levels of insulin-like growth factor (IGF)-1 decreased, while the expression of IGF binding protein (IGFBP)-1 was augmented by more than 20-fold in mSOD1 mice relative to wild-type animals. Moreover, hepatic lymphocytes of pre-symptomatic mSOD1 mice were found to secrete significantly higher levels of cytokines when stimulated with an NKT ligand, ex-vivo. Immunomodulation of NKT cells using an analogue of α-galactosyl ceramide (α-GalCer), in a specific regimen, diminished the number of these cells in the periphery, and induced recruitment of T cells into the affected spinal cord, leading to a modest but significant prolongation of life span of mSOD1 mice. These results identify NKT cells as potential players in ALS, and the liver as an additional site of major pathology in this disease, thereby emphasizing that ALS is not only a non-cell autonomous, but a non-tissue autonomous disease, as well. Moreover, the results suggest potential new therapeutic targets such as the liver for immunomodulatory intervention for modifying the disease, in addition to MN-based neuroprotection and systemic treatments aimed at reducing oxidative stress.


Assuntos
Esclerose Lateral Amiotrófica/imunologia , Modelos Animais de Doenças , Fator de Crescimento Insulin-Like I/metabolismo , Células Matadoras Naturais/imunologia , Fígado/patologia , Linfócitos T/imunologia , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Sequência de Bases , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imuno-Histoquímica , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Medula Espinal/imunologia , Baço/imunologia , Superóxido Dismutase/metabolismo
5.
J Neuroimmunol ; 208(1-2): 19-29, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19189872

RESUMO

Accumulating evidence suggests that autoimmunity against neuronal proteins is important for MS pathogenesis. We have characterized T- and B-cell responses associated with experimental autoimmune encephalomyelitis (EAE) induced in Lewis rats with recombinant beta-Synuclein (betaSync), a neuronal component. The encephalitogenic betaSync-specific T cells recognize a single immunodominant region with an epitope delineated at amino acids 97-105; B-cell specificity is more widespread, albeit directed mostly to the C-terminus of betaSync. Most interestingly, betaSync-induced autoimmune T- and B-cell responses spread not only to other neuronal antigens but also to myelin encephalitogens, raising the possibility that anti-neuronal immune attacks could also result in demyelination.


Assuntos
Autoanticorpos/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Bainha de Mielina/imunologia , Bainha de Mielina/metabolismo , beta-Sinucleína/fisiologia , Sequência de Aminoácidos , Animais , Autoanticorpos/biossíntese , Linhagem Celular , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/genética , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Feminino , Humanos , Camundongos , Dados de Sequência Molecular , Ratos , Ratos Endogâmicos Lew , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/toxicidade , beta-Sinucleína/toxicidade
6.
J Cell Biol ; 183(3): 393-400, 2008 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-18981228

RESUMO

Retinal neurogenesis ceases by the early postnatal period, although retinal progenitor cells (RPCs) persist throughout life. In this study, we show that in the mammalian eye, the function of Toll-like receptor 4 (TLR4) extends beyond regulation of the innate immune response; it restricts RPC proliferation. In TLR4-deficient mice, enhanced proliferation of cells reminiscent of RPCs is evident during the early postnatal period. In vitro experiments demonstrate that TLR4 acts as an intrinsic regulator of RPC fate decision. Increased TLR4 expression in the eye correlates with the postnatal cessation of cell proliferation. However, deficient TLR4 expression is not sufficient to extend the proliferative period but rather contributes to resumption of proliferation in combination with growth factors. Proliferation in vivo is inhibited by both MyD88-dependent and -independent pathways, similar to the mechanisms activated by TLR4 in immune cells. Thus, our study attributes a novel role to TLR4 as a negative regulator of RPC proliferation.


Assuntos
Divisão Celular/fisiologia , Retina/citologia , Células-Tronco/citologia , Receptor 4 Toll-Like/fisiologia , Animais , Diferenciação Celular/genética , Homeostase , Camundongos , Camundongos Knockout , Neurônios/citologia , Células Fotorreceptoras/citologia , Células Fotorreceptoras/fisiologia , Epitélio Pigmentado Ocular/citologia , Epitélio Pigmentado Ocular/fisiologia , Reação em Cadeia da Polimerase , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA