RESUMO
Cell stressors, such as elevated levels of reactive oxygen species (ROS), adversely affect hematopoietic stem cell (HSC) reconstituting ability. However, the effects of ROS have not been evaluated in the context of hematopoietic development from human pluripotent stem cells (hPSCs). Using our previously described in vitro system for efficient derivation of hematopoietic cells from hPSCs, we show that the vast majority of generated hematopoietic cells display supraphysiological levels of ROS compared to fresh cord blood cells. Elevated ROS resulted in DNA damage of the CD34+ hematopoietic fraction and, following functional assays, reduced colony formation and impaired proliferative capacity. Interestingly, all the proliferative potential of the most primitive hematopoietic cells was limited to a small fraction with low ROS levels. We show that elevation of ROS in hPSC-derived hematopoietic cells is contributed by multiple distinct cellular processes. Furthermore, by targeting these molecular processes with 4 unique factors, we could reduce ROS levels significantly, yielding a 22-fold increase in the most primitive CD90+ CD34+ hematopoietic cells with robust growth capacity. We demonstrate that the ROS reducing factors specifically reduced ROS in more primitive hematopoietic fractions, in contrast to endothelial cells that maintained low ROS levels in the cultures. We conclude that high levels of ROS in in vitro differentiation systems of hPSCs is a major determinant in the lack of ability to generate hematopoietic cells with similar proliferation/differentiation potential to in vivo hematopoietic progenitors, and suggest that elevated ROS is a significant barrier to generating hPSC-derived repopulating HSCs. Stem Cells 2017;35:197-206.
Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes/citologia , Espécies Reativas de Oxigênio/farmacologia , Antígenos Thy-1/metabolismo , Animais , Proliferação de Células , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Camundongos , Frações Subcelulares/metabolismoRESUMO
SMAP2 is an Arf GTPase-activating protein that is located and functions on early endosome membranes. In the present study, the trans-Golgi network (TGN) was verified as an additional site of SMAP2 localization based on its co-localization with various TGN-marker proteins. Mutation of specific stretches of basic amino acid residues abolished the TGN-localization of SMAP2. Over-expression of wild-type SMAP2, but not of the mutated SMAP2, inhibited the transport of vesicular stomatitis virus-G protein from the TGN to the plasma membrane. In contrast, this transport was enhanced in SMAP2 (-/-) cells characterized by increased levels of the activated form of Arf. SMAP2 therefore belongs to an ArfGAP subtype that resides on the TGN and functions as a negative regulator of vesicle budding from the organelle.
Assuntos
Proteínas de Membrana/metabolismo , Rede trans-Golgi/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Endossomos/metabolismo , Expressão Gênica , Células HeLa , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Mutação , Transporte Proteico , Proteínas do Envelope Viral/metabolismoRESUMO
Hematopoietic stem cells (HSCs) are multipotent cells responsible for the maintenance of the hematopoietic system throughout life. Dysregulation of the balance in HSC self-renewal, death, and differentiation can have serious consequences such as myelodysplastic syndromes or leukemia. All-trans retinoic acid (ATRA), the biologically active metabolite of vitamin A/RA, has been shown to have pleiotropic effects on hematopoietic cells, enhancing HSC self-renewal while also increasing differentiation of more mature progenitors. Furthermore, ATRA has been shown to have key roles in regulating the specification and formation of hematopoietic cells from pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Here, we summarize the known roles of vitamin A and RA receptors in the regulation of hematopoiesis from HSCs, ES, and iPSCs.
Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes/citologia , Retinoides/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Humanos , Modelos Biológicos , Receptores do Ácido Retinoico/fisiologia , Transdução de SinaisRESUMO
Mast cells are tissue-resident immune cells. Their overgrowth/overactivation results in a range of common distressing, sometimes life-threatening disorders, including asthma, psoriasis, anaphylaxis, and mastocytosis. Currently, drug discovery is hampered by use of cancer-derived mast cell lines or primary cells. Cell lines provide low numbers of mature mast cells and are not representative of in vivo mast cells. Mast cell generation from blood/bone marrow gives poor reproducibility, requiring 8-12 weeks of culture. Here we report a method for the rapid/robust production of mast cells from pluripotent stem cells (PSCs). An advantageous Gata2Venus reporter enriches mast cells and progenitors as they differentiate from PSCs. Highly proliferative mouse mast cells and progenitors emerge after 2 weeks. This method is applicable for rapid human mast cell generation, and could enable the production of sufficient numbers of physiologically relevant human mast cells from patient induced PSCs for the study of mast cell-associated disorders and drug discovery.
Assuntos
Técnicas de Cultura de Células/métodos , Fator de Transcrição GATA2/metabolismo , Genes Reporter , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Mastócitos/citologia , Mastócitos/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Peptídeo Hidrolases/metabolismo , Fenótipo , Receptores de Superfície Celular/metabolismoRESUMO
BACKGROUND: Mesenchymal stromal cells (MSCs) are currently being evaluated in numerous pre-clinical and clinical cell-based therapy studies. Furthermore, there is an increasing interest in exploring alternative uses of these cells in disease modelling, pharmaceutical screening, and regenerative medicine by applying reprogramming technologies. However, the limited availability of MSCs from various sources restricts their use. Term amniotic fluid has been proposed as an alternative source of MSCs. Previously, only low volumes of term fluid and its cellular constituents have been collected, and current knowledge of the MSCs derived from this fluid is limited. In this study, we collected amniotic fluid at term using a novel collection system and evaluated amniotic fluid MSC content and their characteristics, including their feasibility to undergo cellular reprogramming. METHODS: Amniotic fluid was collected at term caesarean section deliveries using a closed catheter-based system. Following fluid processing, amniotic fluid was assessed for cellularity, MSC frequency, in-vitro proliferation, surface phenotype, differentiation, and gene expression characteristics. Cells were also reprogrammed to the pluripotent stem cell state and differentiated towards neural and haematopoietic lineages. RESULTS: The average volume of term amniotic fluid collected was approximately 0.4 litres per donor, containing an average of 7 million viable mononuclear cells per litre, and a CFU-F content of 15 per 100,000 MNCs. Expanded CFU-F cultures showed similar surface phenotype, differentiation potential, and gene expression characteristics to MSCs isolated from traditional sources, and showed extensive expansion potential and rapid doubling times. Given the high proliferation rates of these neonatal source cells, we assessed them in a reprogramming application, where the derived induced pluripotent stem cells showed multigerm layer lineage differentiation potential. CONCLUSIONS: The potentially large donor base from caesarean section deliveries, the high yield of term amniotic fluid MSCs obtainable, the properties of the MSCs identified, and the suitability of the cells to be reprogrammed into the pluripotent state demonstrated these cells to be a promising and plentiful resource for further evaluation in bio-banking, cell therapy, disease modelling, and regenerative medicine applications.
Assuntos
Líquido Amniótico/citologia , Terapia Baseada em Transplante de Células e Tecidos , Reprogramação Celular , Células-Tronco Mesenquimais/citologia , Adipogenia , Adesão Celular , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Proliferação de Células , Separação Celular , Células Epiteliais/citologia , Feminino , Fibroblastos/citologia , Hematopoese , Humanos , Recém-Nascido , Neurônios/citologia , Osteogênese , Células-Tronco Pluripotentes/citologia , GravidezRESUMO
During development, hematopoietic cells originate from endothelium in a process known as endothelial-to-hematopoietic transition (EHT). To study human EHT, we coupled flow cytometry and single-cell transcriptional analyses of human pluripotent stem cell-derived CD34+ cells. The resulting transcriptional hierarchy showed a continuum of endothelial and hematopoietic signatures. At the interface of these two signatures, a unique group of cells displayed both an endothelial signature and high levels of key hematopoietic stem cell-associated genes. This interphase group was validated via sort and subculture as an immediate precursor to hematopoietic cells. Differential expression analyses further divided this population into subgroups, which, upon subculture, showed distinct hematopoietic lineage differentiation potentials. We therefore propose that immediate precursors to hematopoietic cells already have their hematopoietic lineage restrictions defined prior to complete downregulation of the endothelial signature. These findings increase our understanding of the processes of de novo hematopoietic cell generation in the human developmental context.
Assuntos
Células Endoteliais/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Antígenos CD34/metabolismo , Linhagem da Célula , Células Cultivadas , Regulação para Baixo , Células Endoteliais/citologia , Endotélio/metabolismo , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Humanos , Leucossialina/metabolismo , Células-Tronco Pluripotentes/citologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/metabolismo , Análise de Célula Única , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Variante 6 da Proteína do Fator de Translocação ETSRESUMO
Hematopoietic cells emerge from hemogenic endothelium in the developing embryo. Mechanisms behind human hematopoietic stem and progenitor cell development remain unclear. Using a human pluripotent stem cell differentiation model, we report that cyclic AMP (cAMP) induction dramatically increases HSC-like cell frequencies. We show that hematopoietic cell generation requires cAMP signaling through the Exchange proteins activated by cAMP (cAMP-Epac) axis; Epac signaling inhibition decreased both hemogenic and non-hemogenic endothelium, and abrogated hematopoietic cell generation. Furthermore, in hematopoietic progenitor and stem-like cells, cAMP induction mitigated oxidative stress, created a redox-state balance, and enhanced C-X-C chemokine receptor type 4 (CXCR4) expression, benefiting the maintenance of these primitive cells. Collectively, our study provides insights and mechanistic details on the previously unrecognized role of cAMP signaling in regulating human hematopoietic development. These findings advance the mechanistic understanding of hematopoietic development toward the development of transplantable human hematopoietic cells for therapeutic needs.
Assuntos
Diferenciação Celular/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Receptores CXCR4/genética , AMP Cíclico/genética , Endotélio/crescimento & desenvolvimento , Endotélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Estresse Oxidativo/genética , Transdução de SinaisRESUMO
The functions of retinoic acid (RA), a potent morphogen with crucial roles in embryogenesis including developmental hematopoiesis, have not been thoroughly investigated in the human setting. Using an in vitro model of human hematopoietic development, we evaluated the effects of RA signaling on the development of blood and on generated hematopoietic progenitors. Decreased RA signaling increases the generation of cells with a hematopoietic stem cell (HSC)-like phenotype, capable of differentiation into myeloid and lymphoid lineages, through two separate mechanisms: by increasing the commitment of pluripotent stem cells toward the hematopoietic lineage during the developmental process and by decreasing the differentiation of generated blood progenitors. Our results demonstrate that controlled low-level RA signaling is a requirement in human blood development, and we propose a new interpretation of RA as a regulatory factor, where appropriate control of RA signaling enables increased generation of hematopoietic progenitor cells from pluripotent stem cells in vitro.