Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 19(9): 1720-1731, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779517

RESUMO

The assembly of biopolymers into a hydrated elastic network often goes along with syneresis, a spontaneous process during which the hydrogel slowly shrinks and releases solvent. The tendency to syneresis of calcium-alginate hydrogels, widely used biocompatible materials, is a hindrance to applications for which dimensional integrity is crucial. Although calcium-induced aggregation of specific block-sequences has been long known as the microscopic process at work in both primary cross-linking and syneresis, the nature of the coupling between these structural events and the global deswelling flow has remained so far elusive. We have tackled this issue within the regime of entangled pregels that yield highly cross-linked, self-crowded hydrogels with stiff networks. Using an original, stopped-flow extrusion experiment, we have unveiled a robust, stretched-exponential kinetics of shrinking, spanning more than six decades of time and quasi-independent of the alginate concentration. A careful analysis of the puzzling dynamical features of syneresis in these gels has led us to propose that due to the network rigidity, the calcium-fueled, random collapse events that drive solvent locally, are not thermally activated but rather controlled by the average poroelastic flow itself, according to a self-sustained mechanism described here for the first time.

2.
Phys Chem Chem Phys ; 23(43): 24823-24833, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34714899

RESUMO

The evolution of the microstructure due to spinodal decomposition in phase separated mixtures has a strong impact on the final material properties. In the late stage of coarsening, the system is characterized by the growth of a single characteristic length scale L ∼ Ctα. To understand the structure-property relationship, the knowledge of the coarsening exponent α and the coarsening rate constant C is mandatory. Since the existing literature is not entirely consistent, we perform phase field simulations based on the Cahn-Hilliard equation. We restrict ourselves to binary mixtures using a symmetric Flory-Huggins free energy and a constant composition-independent mobility term and show that the coarsening for off-critical mixtures is slower than the expected t1/3-growth. Instead, we find α to be dependent on the mixture composition and associate this with the observed morphologies. Finally, we propose a model to describe the complete coarsening kinetics including the rate constant C.

3.
Phys Chem Chem Phys ; 22(12): 6638-6652, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32159553

RESUMO

The performance of solution-processed solar cells strongly depends on the geometrical structure and roughness of the photovoltaic layers formed during film drying. During the drying process, the interplay of crystallization and liquid-liquid demixing leads to structure formation on the nano- and microscale and to the final rough film. In order to better understand how the film structure can be improved by process engineering, we aim at theoretically investigating these systems by means of phase-field simulations. We introduce an evaporation model based on the Cahn-Hilliard equation for the evolution of the fluid concentrations coupled to the Allen-Cahn equation for the liquid-vapour phase transformation. We demonstrate its ability to match the experimentally measured drying kinetics and study the impact of the parameters of our model. Furthermore, the evaporation of solvent blends and solvent-vapour annealing are investigated. The dry film roughness emerges naturally from our set of equations, as illustrated through preliminary simulations of spinodal decomposition and film drying on structured substrates.

4.
J Chem Phys ; 148(5): 054901, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29421908

RESUMO

The stress response of permanently crosslinked gelatin gels was recently observed to display glass-like features, namely, a stretched-exponential behavior terminated by an exponential decay, the characteristic time scales of which increase dramatically with decreasing temperature. This phenomenon is studied here using a model of flexible polymer gel network where relaxation proceeds via elementary monomer exchanges between helix and coil segments. The relaxation dynamics of a full network simulation is found to be nearly identical to that of a model of independent strands, which shows that for flexible polymer gels in the range of elastic moduli of interest, both strand contour length disorder and elastic couplings are irrelevant. We thus focus on the independent strand model and find it not only to explain the observed functional form of the stress relaxation curves but also to yield predictions that match very satisfactorily the experimental measurements of final relaxation time and total stress drop. The system under study thus constitutes a rare case where the origin of glass-like behavior can be unambiguously identified, namely, as the signature of the enhancement of helix content fluctuations when approaching from above the mean-field helix-coil transition of strands.

5.
Soft Matter ; 13(38): 6816-6830, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28825087

RESUMO

Liquid foams are unstable due to aging processes such as drainage, coalescence or coarsening. Since these processes modify the foam structure, they can be a severe limitation to the elaboration of solid foams with controlled structures inherited from their liquid precursors. Such applications call for a thorough understanding of foam stabilization. Here we study how coarsening can be inhibited by the combined effects of a mixture of gas containing a species insoluble in the foaming solution and of gelation of the foaming solution. We present experiments with model ordered liquid foams and hydrogel foams. They allow us to identify the underlying physical mechanisms of stabilization and their governing parameters, namely the bubble radius Ro, the foam shear modulus G and the number ηo of insoluble trapped gas molecules per bubble. We propose a scaling model that predicts the stability diagram of an ideal monodisperse perfectly ordered foam as a function of Ro, G and ηo, in qualitative agreement with our data. We show that the domain of stable foams is governed by a characteristic elasto-capillary radius set by the ratio of surface tension to storage modulus.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36282868

RESUMO

The performance of organic solar cells strongly depends on the bulk-heterojunction (BHJ) morphology of the photoactive layer. This BHJ forms during the drying of the wet-deposited solution, because of physical processes such as crystallization and/or liquid-liquid phase separation (LLPS). However, the process-structure relationship remains insufficiently understood. In this work, a recently developed, coupled phase-field-fluid mechanics framework is used to simulate the BHJ formation upon drying. For the first time, this allows to investigate the interplay between all the relevant physical processes (evaporation, crystal nucleation and growth, liquid demixing, composition-dependent kinetic properties), within a single coherent theoretical framework. Simulations for the model system P3HT-PCBM are presented. The comparison with previously reported in situ characterization of the drying structure is very convincing: The morphology formation pathways, crystallization kinetics, and final morphology are in line with experimental results. The final BHJ morphology is a subtle mixture of pure crystalline donor and acceptor phases, pure and mixed amorphous domains, which depends on the process parameters and material properties. The expected benefit of such an approach is to identify physical design rules for ink formulation and processing conditions to optimize the cell's performance. It could be applied to recent organic material systems in the future.

7.
ACS Appl Mater Interfaces ; 13(47): 55988-56003, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792348

RESUMO

In solution processing of thin films, the material layer is deposited from a solution composed of several solutes and solvents. The final morphology and hence the properties of the film often depend on the time needed for the evaporation of the solvents. This is typically the case for organic photoactive or electronic layers. Therefore, it is important to be able to predict the evaporation kinetics of such mixtures. We propose here a new phase-field model for the simulation of evaporating fluid mixtures and simulate their evaporation kinetics. Similar to the Hertz-Knudsen theory, the local liquid-vapor (LV) equilibrium is assumed to be reached at the film surface and evaporation is driven by diffusion away from this gas layer. In the situation where the evaporation is purely driven by the LV equilibrium, the simulations match the behavior expected theoretically from the free energy: for evaporation of pure solvents, the evaporation rate is constant and proportional to the vapor pressure. For mixtures, the evaporation rate is in general strongly time-dependent because of the changing composition of the film. Nevertheless, for highly nonideal mixtures, such as poorly compatible fluids or polymer solutions, the evaporation rate becomes almost constant in the limit of low Biot numbers. The results of the simulation have been successfully compared to experiments on a polystyrene-toluene mixture. The model allows to take into account deformations of the liquid-vapor interface and, therefore, to simulate film roughness or dewetting.

8.
Adv Sci (Weinh) ; 8(7): 2004213, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854901

RESUMO

Associating collagen with biodegradable hydrophobic polyesters constitutes a promising method for the design of medicated biomaterials. Current collagen-polyester composite hydrogels consisting of pre-formed polymeric particles encapsulated within a low concentrated collagen hydrogel suffer from poor physical properties and low drug loading. Herein, an amphiphilic composite platform associating dense collagen hydrogels and up to 50 wt% polyesters with different hydrophobicity and chain length is developed. An original method of fabrication is disclosed based on in situ nanoprecipitation of polyesters impregnated in a pre-formed 3D dense collagen network. Composites made of poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) but not polycaprolactone (PCL) exhibit improved mechanical properties compared to those of pure collagen dense hydrogels while keeping a high degree of hydration. Release kinetics of spironolactone, a lipophilic steroid used as a drug model, can be tuned over one month. No cytotoxicity of the composites is observed on fibroblasts and keratinocytes. Unlike the incorporation of pre-formed particles, the new process allows for both improved physical properties of collagen hydrogels and controlled drug delivery. The ease of fabrication, wide range of accessible compositions, and positive preliminary safety evaluations of these collagen-polyesters will favor their translation into clinics in wide areas such as drug delivery and tissue engineering.


Assuntos
Colágeno/química , Sistemas de Liberação de Medicamentos/métodos , Hidrogéis/química , Nanoestruturas/química , Poliésteres/química , Espironolactona/farmacocinética , Tensoativos/química , Técnicas In Vitro
9.
ACS Biomater Sci Eng ; 7(2): 626-635, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33400500

RESUMO

The elaboration of scaffolds able to efficiently promote cell differentiation toward a given cell type remains challenging. Here, we engineered dense type I collagen threads with the aim of providing scaffolds with specific morphological and mechanical properties for C3H10T1/2 mesenchymal stem cells. Extrusion of pure collagen solutions at different concentrations (15, 30, and 60 mg/mL) in a PBS 5× buffer generated dense fibrillated collagen threads. For the two highest concentrations, threads displayed a core-shell structure with a marked fibril orientation of the outer layer along the longitudinal axis of the threads. Young's modulus and ultimate tensile stress as high as 1 and 0.3 MPa, respectively, were obtained for the most concentrated collagen threads without addition of any cross-linkers. C3H10T1/2 cells oriented themselves with a mean angle of 15-24° with respect to the longitudinal axis of the threads. Cells penetrated the 30 mg/mL scaffolds but remained on the surface of the 60 mg/mL ones. After three weeks of culture, cells displayed strong expression of the tendon differentiation marker Tnmd, especially for the 30 mg/mL threads. These results suggest that both the morphological and mechanical characteristics of collagen threads are key factors in promoting C3H10T1/2 differentiation into tenocytes, offering promising levers to optimize tissue engineering scaffolds for tendon regeneration.


Assuntos
Colágeno , Células-Tronco Mesenquimais , Diferenciação Celular , Engenharia Tecidual , Alicerces Teciduais
10.
J Mater Chem B ; 5(16): 2931-2940, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32263986

RESUMO

Silicates-in-silica nanocomposite hydrogels obtained from sodium silicates/colloidal silica mixtures have previously been found to be useful for bacterial encapsulation. However the extension of synthesis conditions and the understanding of their impact on the silica matrix would widen the applicability of this process in terms of encapsulated organisms and the host properties. Here the influence of silicates and the colloidal silica concentration as well as pH conditions on the gel time, the optical properties, the structural and mechanical properties of silica matrices was studied. We show that gel formation is driven by silicate condensation but that the aggregation of silica colloids also has a major influence on the transparency and structure of the nanocomposites. Three different photosynthetic organisms, cyanobacteria Anabaena flos-aquae and two microalgae Chorella vulgaris and Euglena gracilis, were used as probes of the phycocompatibility of the process. The three organisms were highly sensitive to the silicate concentration, which impacts both the gelation time and ionic strength conditions. The Ludox content was crucial for cyanobacteria as it strongly impacts the Young's modulus of the matrices. The detrimental effect of acidic pH on cell suspension was compensated by the silica network. Overall, it is now possible to select optimal encapsulation conditions based on the physiology of the targeted cells, opening wide perspectives for the design of biosensors and bioreactors.

11.
J Clin Invest ; 123(8): 3564-76, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23863709

RESUMO

Tendon formation and repair rely on specific combinations of transcription factors, growth factors, and mechanical parameters that regulate the production and spatial organization of type I collagen. Here, we investigated the function of the zinc finger transcription factor EGR1 in tendon formation, healing, and repair using rodent animal models and mesenchymal stem cells (MSCs). Adult tendons of Egr1-/- mice displayed a deficiency in the expression of tendon genes, including Scx, Col1a1, and Col1a2, and were mechanically weaker compared with their WT littermates. EGR1 was recruited to the Col1a1 and Col2a1 promoters in postnatal mouse tendons in vivo. Egr1 was required for the normal gene response following tendon injury in a mouse model of Achilles tendon healing. Forced Egr1 expression programmed MSCs toward the tendon lineage and promoted the formation of in vitro-engineered tendons from MSCs. The application of EGR1-producing MSCs increased the formation of tendon-like tissues in a rat model of Achilles tendon injury. We provide evidence that the ability of EGR1 to promote tendon differentiation is partially mediated by TGF-ß2. This study demonstrates EGR1 involvement in adult tendon formation, healing, and repair and identifies Egr1 as a putative target in tendon repair strategies.


Assuntos
Tendão do Calcâneo/fisiopatologia , Diferenciação Celular , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Cicatrização , Tendão do Calcâneo/metabolismo , Tendão do Calcâneo/patologia , Animais , Linhagem Celular , Embrião de Galinha , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Módulo de Elasticidade , Regulação da Expressão Gênica , Humanos , Masculino , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas , Ratos , Ratos Wistar , Regeneração , Transdução de Sinais , Transcriptoma , Fator de Crescimento Transformador beta2/fisiologia
12.
Phys Rev Lett ; 88(7): 075509, 2002 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-11863914

RESUMO

We present experimental evidence of self-healing shear cracks at a gel/glass interface. This system exhibits two dynamical regimes depending on the driving velocity: steady sliding at high velocity (>V(c) approximately 100--125 microm/s), characterized by a shear-thinning rheology, and periodic stick-slip dynamics at low velocity. In this last regime, slip occurs by propagation of pulses that restick via a "healing instability" occurring when the local sliding velocity reaches the macroscopic transition velocity V(c). At driving velocities close below V(c), the system exhibits complex spatiotemporal behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA