Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cardiovasc Electrophysiol ; 32(3): 704-712, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476464

RESUMO

INTRODUCTION: Few studies have examined heat transfer and thermal injury on the epiesophageal surface during radiofrequency application, or compared the risk of esophageal thermal injury between standard and high-power, short-duration (HPSD) ablation. We studied the thermodynamics of HPSD and standard ablation at different tissue interfaces between the left atrium and esophagus, focusing on epiesophageal temperature changes and thermal injury. METHODS AND RESULTS: Fresh porcine heart and esophageal sections were secured to a custom holder and submerged in a temperature-controlled, circulating water bath. During ablation, thermistors recorded temperatures at the catheter tip-atrial interface, epiesophageal-atrial interface, and esophageal lumen. Samples were ablated in triplicate with the following parameters: contact force (15/25g), power (10/20/30 W standard; 40/45/50 W HPSD), and duration (10/20/30 s standard; 5/10/15 s HPSD). Epiesophageal and endoluminal temperature rises were greater in HPSD than in standard ablation (epiesophageal: 5.9 ± 5.6 vs. 2.2 ± 2.0°C, p < .01; endoluminal: 0.7 ± 0.5 vs. 0.4 ± 0.2°C, p < .01). Six of 30 HPSD ablations and 1 of 26 standard ablations caused esophageal injury. The delay between the peak epiesophageal and endoluminal temperatures was greater in HPSD than in standard ablation (24.2 ± 22.1 vs. 13.0 ± 11.0 s, p = .023). Likewise, the peak epiesophageal surface temperature differed more from the concurrent endoluminal temperature in HPSD ablation (5.1 ± 5.3 vs. 1.7 ± 2.0°C, p < .01). CONCLUSION: Endoluminal temperature underestimates epiesophageal surface temperature substantially during HPSD ablation. Visible epiesophageal injury was associated with a 2.2 ± 2.1°C rise in endoluminal temperature, corresponding to a 10.2 ± 6.5°C rise in epiesophageal temperature.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Ablação por Radiofrequência , Animais , Fibrilação Atrial/cirurgia , Ablação por Cateter/efeitos adversos , Esôfago/diagnóstico por imagem , Esôfago/cirurgia , Suínos , Temperatura
2.
Tex Heart Inst J ; 47(4): 265-270, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33472218

RESUMO

Ethanol solubilizes cell membranes, making it useful for various ablation applications. We examined the effect of time and alcohol type on the extent of ablation, quantified as Euclidean distances between color coordinates. We obtained biopsy punch samples (diameter, 6 mm) of left atrial appendage, atrial, ventricular, and septal tissue from porcine hearts and placed them in transwell plates filled with ethanol or methanol for 10, 20, 30, 40, 50, or 60 min. Control samples were taken for each time point. At each time point, samples were collected, cut transversely, and photographed. With use of a custom MATLAB program, all images were analyzed in the CIELAB color space, which is more perceptually uniform than the red-green-blue color space. Euclidean distances were calculated from CIELAB coordinates. The mean and standard error of these distances were analyzed. Two-way analysis of variance was used to test for differences among time points, and 2-tailed t tests, for differences between the alcohol datasets at each time point. Generally, Euclidean distances differed significantly between all time points, except for those immediately adjacent, and methanol produced larger Euclidean distances than ethanol did. Some tissue showed a plateauing effect, potentially indicating transmurality. Mean Euclidean distances effectively indexed alcohol ablation in cardiac tissue. Furthermore, we found that methanol ablated tissue more effectively than ethanol did. With ethanol, the extent of ablation for atrial tissue was largest at 60 min. We conclude that to achieve full transmurality in clinical applications, ethanol must remain in contact with atrial tissue for at least one hour.


Assuntos
Técnicas de Ablação/métodos , Arritmias Cardíacas/terapia , Etanol/farmacologia , Animais , Modelos Animais de Doenças , Átrios do Coração , Ventrículos do Coração , Suínos
3.
Heart Rhythm O2 ; 1(4): 290-296, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34113883

RESUMO

BACKGROUND: Bipolar radiofrequency (RF) ablation strategies are increasingly used, mainly to target deep myocardial reentrant circuits responsible for ventricular tachycardia that cannot be extinguished with traditional unipolar RF ablation. Because this strategy is novel, factors that affect lesion geometry and steam pop formation require further investigation. OBJECTIVE: To assess the effect of contact force, power, and time on the resulting lesion geometry and the risk of steam pop formation during bipolar RF ablation of thick myocardial tissue. METHODS: A custom ex vivo bipolar ablation model was used to assess lesion formation. A combination of parallel and perpendicular configurations of ablation catheters was used to create lesions by varying force (20g, 30g, or 40g), power (30 or 40 W), and time (20, 30, 45, or 60 seconds). Lesion dimensions and the incidence of steam pops were recorded and then analyzed with binary logistic regression and multiple linear regression. RESULTS: In bipolar ablation, lesion transmurality was most affected by the amount of time RF energy was applied. Durations longer than 20 seconds resulted in lesions deeper than half the tissue thickness. Steam pop formation was more frequent in thinner tissue, at longer ablation times, and at higher powers. CONCLUSION: The parameters assessed in this ex vivo model could be used as guidelines for future in vivo work and clinical evaluation of interventricular septal bipolar ablation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA