Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Protein Expr Purif ; 215: 106409, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38040272

RESUMO

The secretion of extracellular vesicles (EVs) is a common process in Gram-negative bacteria and can be exploited for biotechnological applications. EVs pose a self-adjuvanting, non-replicative vaccine platform, where membrane and antigens are presented to the host immune system in a non-infectious fashion. The secreted quantity of EVs varies between Gram-negative bacterial species and is comparatively high in the model bacterium E. coli. The outer membrane proteins OmpA and OmpF of the fish pathogen Y. ruckeri have been proposed as vaccine candidates to prevent enteric redmouth disease in aquaculture. In this work, Y.ruckeri OmpA or OmpF were expressed in E. coli and recombinant EVs were isolated. To avoid competition between endogenous E. coli OmpA or OmpF, Y. ruckeri OmpA and OmpF were expressed in E. coli strains lacking ompA, ompF, and in a quadruple knockout strain where the four major outer membrane protein genes ompA, ompC, ompF and lamB were removed. Y.ruckeri OmpA and OmpF were successfully expressed in EVs derived from the E. coli mutants as verified by SDS-PAGE, heat modifiability and proteomic analysis using mass-spectrometry. Transmission electron microscopy revealed the presence of EVs in all E. coli strains, and increased EV concentrations were detected when expressing Y. ruckeri OmpA or OmpF in recombinant EVs compared to empty vector controls as verified by nanoparticle tracking analysis. These results show that E. coli can be utilized as a vector for production of EVs expressing outer membrane antigens from Y. ruckeri.


Assuntos
Proteínas de Escherichia coli , Vacinas , Yersiniose , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Yersinia ruckeri/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteômica , Vacinas/metabolismo , Proteínas de Escherichia coli/genética
2.
PLoS Biol ; 11(5): e1001565, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23700385

RESUMO

The division of cellular space into functionally distinct membrane-defined compartments has been one of the major transitions in the history of life. Such compartmentalization has been claimed to occur in members of the Planctomycetes, Verrucomicrobiae, and Chlamydiae bacterial superphylum. Here we have investigated the three-dimensional organization of the complex endomembrane system in the planctomycete bacteria Gemmata obscuriglobus. We reveal that the G. obscuriglobus cells are neither compartmentalized nor nucleated as none of the spaces created by the membrane invaginations are closed; instead, they are all interconnected. Thus, the membrane organization of G. obscuriglobus, and most likely all PVC members, is not different from, but an extension of, the "classical" Gram-negative bacterial membrane system. Our results have implications for our definition and understanding of bacterial cell organization, the genesis of complex structure, and the origin of the eukaryotic endomembrane system.


Assuntos
Proteínas de Bactérias/metabolismo , Membranas Intracelulares/ultraestrutura , Planctomycetales/metabolismo , Compartimento Celular , Membranas Intracelulares/metabolismo , Microscopia Eletrônica , Planctomycetales/ultraestrutura
3.
J Cell Sci ; 126(Pt 14): 3043-54, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23687375

RESUMO

Nanoparticles (NPs) are increasingly used as biodegradable vehicles to selectively deliver therapeutic agents such as drugs or antigens to cells. The most widely used vehicle for this purpose is based on copolymers of lactic acid and glycolic acid (PLGA) and has been extensively used in experiments aimed at delivering antibiotics against Mycobacterium tuberculosis in animal models of tuberculosis. Here, we describe fabrication of PLGA NPs containing either a high concentration of rifampicin or detectable levels of the green fluorescent dye, coumarin-6. Our goal here was twofold: first to resolve the controversial issue of whether, after phagocytic uptake, PLGA NPs remain membrane-bound or whether they escape into the cytoplasm, as has been widely claimed. Second, we sought to make NPs that enclosed sufficient rifampicin to efficiently clear macrophages of infection with Mycobacterium bovis BCG. Using fluorescence microscopy and immuno-electron microscopy, in combination with markers for lysosomes, we show that BCG bacteria, as expected, localized to early phagosomes, but that at least 90% of PLGA particles were targeted to, and remained in, low pH, hydrolase-rich phago-lysosomes. Our data collectively argue that PLGA NPs remain membrane-enclosed in macrophages for at least 13 days and degrade slowly. Importantly, provided that the NPs are fabricated with sufficient antibiotic, one dose given after infection is sufficient to efficiently clear the BCG infection after 9-12 days of treatment, as shown by estimates of the number of bacterial colonies in vitro.


Assuntos
Antibióticos Antituberculose/administração & dosagem , Portadores de Fármacos/química , Ácido Láctico , Macrófagos/microbiologia , Mycobacterium bovis/efeitos dos fármacos , Nanopartículas/química , Ácido Poliglicólico , Rifampina/administração & dosagem , Animais , Linhagem Celular , Membrana Celular/metabolismo , Contagem de Colônia Microbiana , Feminino , Masculino , Camundongos , Fagossomos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
4.
Fish Shellfish Immunol ; 42(1): 50-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25449706

RESUMO

Infection of fish with the facultative intracellular bacterium Francisella noatunensis remains an unresolved problem for aquaculture industry worldwide as it is difficult to vaccinate against without using live attenuated vaccines. Outer membrane vesicles (OMVs) are biological structures shed by Gram-negative bacteria in response to various environmental stimuli. OMVs have successfully been used to vaccinate against both intracellular and extracellular pathogens, due to an ability to stimulate innate, cell-mediated and humoral immune responses. We show by using atomic force and electron microscopy that the fish pathogenic bacterium F. noatunensis subspecies noatunensis (F.n.n.) shed OMVs both in vitro into culture medium and in vivo in a zebrafish infection model. The main protein constituents of the OMV are IglC, PdpD and PdpA, all known Francisella virulence factors, in addition to the outer membrane protein FopA and the chaperonin GroEL, as analyzed by mass spectrometry. The vesicles, when used as a vaccine, reduced proliferation of the bacterium and protected zebrafish when subsequently challenged with a high dose of F.n.n. without causing adverse effects for the host. Also granulomatous responses were reduced in F.n.n.-challenged zebrafish after OMV vaccination. Taken together, the data support the possible use of OMVs as vaccines against francisellosis in fish.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/farmacologia , Francisella/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Imunidade Humoral/imunologia , Vesículas Transportadoras/imunologia , Vacinação/métodos , Animais , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Francisella/ultraestrutura , Imunidade Humoral/efeitos dos fármacos , Estimativa de Kaplan-Meier , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Espectrometria de Massas em Tandem , Vesículas Transportadoras/ultraestrutura , Peixe-Zebra
5.
Nucleic Acids Res ; 40(16): e120, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22539265

RESUMO

Phage display has been instrumental in discovery of novel binding peptides and folded domains for the past two decades. We recently reported a novel pIX phagemid display system that is characterized by a strong preference for phagemid packaging combined with low display levels, two key features that support highly efficient affinity selection. However, high diversity in selected repertoires are intimately coupled to high display levels during initial selection rounds. To incorporate this additional feature into the pIX display system, we have developed a novel helper phage termed DeltaPhage that allows for high-valence display on pIX. This was obtained by inserting two amber mutations close to the pIX start codon, but after the pVII translational stop, conditionally inactivating the helper phage encoded pIX. Until now, the general notion has been that display on pIX is dependent on wild-type complementation, making high-valence display unachievable. However, we found that DeltaPhage does facilitate high-valence pIX display when used with a non-suppressor host. Here, we report a side-by-side comparison with pIII display, and we find that this novel helper phage complements existing pIX phagemid display systems to allow both low and high-valence display, making pIX display a complete and efficient alternative to existing pIII phagemid display systems.


Assuntos
Bacteriófagos/genética , Vírus Auxiliares/genética , Biblioteca de Peptídeos , Animais , Antígenos/análise , Bacteriófagos/fisiologia , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos , Vírus Auxiliares/fisiologia , Camundongos , Receptores de Antígenos de Linfócitos T/análise
6.
Mol Microbiol ; 85(6): 1166-78, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22882659

RESUMO

Type IV pili are surface organelles essential for pathogenicity of many Gram-negative bacteria. In Neisseria gonorrhoeae, the major subunit of type IV pili, PilE, is a target of its general O-linked glycosylation system. This system modifies a diverse set of periplasmic and extracellular gonococcal proteins with a variable set of glycans. Here we show that expression of a particular hexa-histidine-tagged PilE was associated with growth arrest. By studying intra- and extragenic suppressors, we found that this phenotype was dependent on pilus assembly and retraction. Based on these results, we developed a sensitive tool to identify factors with subtle effects on pilus dynamics. Using this approach, we found that glycan chain length has differential effects on the growth arrest that appears to be mediated at the level of pilin subunit-subunit interactions and bidirectional remodelling of pilin between its membrane-associated and assembled states. Gonococcal pilin glycosylation thus plays both an intracellular role in pilus dynamics and potential extracellular roles mediated through type IV pili. In addition to demonstrating the effect of glycosylation on pilus dynamics, the study provides a new way of identifying factors with less dramatic effects on processes involved in type IV pilus biogenesis.


Assuntos
Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Neisseria gonorrhoeae/fisiologia , Multimerização Proteica , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Glicosilação , Neisseria gonorrhoeae/crescimento & desenvolvimento , Neisseria gonorrhoeae/metabolismo
7.
J Virol ; 85(11): 5275-86, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21411528

RESUMO

Cardiomyopathy syndrome (CMS) of farmed and wild Atlantic salmon (Salmo salar L.) is a disease of yet unknown etiology characterized by a necrotizing myocarditis involving the atrium and the spongious part of the heart ventricle. Here, we report the identification of a double-stranded RNA virus likely belonging to the family Totiviridae as the causative agent of the disease. The proposed name of the virus is piscine myocarditis virus (PMCV). On the basis of the RNA-dependent RNA polymerase (RdRp) sequence, PMCV grouped with Giardia lamblia virus and infectious myonecrosis virus of penaeid shrimp. The genome size of PMCV is 6,688 bp, with three open reading frames (ORFs). ORF1 likely encodes the major capsid protein, while ORF2 encodes the RdRp, possibly expressed as a fusion protein with the ORF1 product. ORF3 seems to be translated as a separate protein not described for any previous members of the family Totiviridae. Following experimental challenge with cell culture-grown virus, histopathological changes are observed in heart tissue by 6 weeks postchallenge (p.c.), with peak severity by 9 weeks p.c. Viral genome levels detected by real-time reverse transcription (RT)-PCR peak earlier at 6 to 7 weeks p.c. The virus genome is detected by in situ hybridization in degenerate cardiomyocytes from clinical cases of CMS. Virus genome levels in the hearts from clinical field cases correlate well with the severity of histopathological changes in heart tissue. The identification of the causative agent for CMS is important for improved disease surveillance and disease control and will serve as a basis for vaccine development against the disease.


Assuntos
Cardiomiopatias/veterinária , Doenças dos Peixes/virologia , Infecções por Vírus de RNA/veterinária , Totiviridae/isolamento & purificação , Animais , Cardiomiopatias/patologia , Cardiomiopatias/virologia , Análise por Conglomerados , Doenças dos Peixes/patologia , Coração/virologia , Histocitoquímica , Hibridização In Situ , Microscopia , Dados de Sequência Molecular , Miocárdio/patologia , Fases de Leitura Aberta , Filogenia , Infecções por Vírus de RNA/patologia , Infecções por Vírus de RNA/virologia , RNA de Cadeia Dupla/genética , RNA Viral/genética , DNA Polimerase Dirigida por RNA/genética , Salmo salar , Análise de Sequência de DNA , Totiviridae/patogenicidade , Proteínas Virais/genética
8.
Front Microbiol ; 11: 510638, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072001

RESUMO

Bacteriophages use a large number of different bacterial cell envelope structures as receptors for surface attachment. As a consequence, bacterial surfaces represent a major control point for the defense against phage attack. One strategy for phage population control is the production of outer membrane vesicles (OMVs). In Gram-negative host bacteria, O-antigen-specific bacteriophages address lipopolysaccharide (LPS) to initiate infection, thus relying on an essential outer membrane glycan building block as receptor that is constantly present also in OMVs. In this work, we have analyzed interactions of Salmonella (S.) bacteriophage P22 with OMVs. For this, we isolated OMVs that were formed in large amounts during mechanical cell lysis of the P22 S. Typhimurium host. In vitro, these OMVs could efficiently reduce the number of infective phage particles. Fluorescence spectroscopy showed that upon interaction with OMVs, bacteriophage P22 released its DNA into the vesicle lumen. However, only about one third of the phage P22 particles actively ejected their genome. For the larger part, no genome release was observed, albeit the majority of phages in the system had lost infectivity towards their host. With OMVs, P22 ejected its DNA more rapidly and could release more DNA against elevated osmotic pressures compared to DNA release triggered with protein-free LPS aggregates. This emphasizes that OMV composition is a key feature for the regulation of infective bacteriophage particles in the system.

9.
J Virol ; 82(9): 4480-91, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18305048

RESUMO

The replication/transcription complex of the arterivirus equine arteritis virus (EAV) is associated with paired membranes and/or double-membrane vesicles (DMVs) that are thought to originate from the endoplasmic reticulum. Previously, coexpression of two putative transmembrane nonstructural proteins (nsp2 and nsp3) was found to suffice to induce these remarkable membrane structures, which are typical of arterivirus infection. Here, site-directed mutagenesis was used to investigate the role of nsp3 in more detail. Liberation of the hydrophobic N terminus of nsp3, which is normally achieved by cleavage of the nsp2/3 junction by the nsp2 protease, was nonessential for the formation of DMVs. However, the substitution of each of a cluster of four conserved cysteine residues, residing in a predicted luminal loop of nsp3, completely blocked DMV formation. Some of these mutant nsp3 proteins were also found to be highly cytotoxic, in particular, exerting a dramatic effect on the endoplasmic reticulum. The functionality of an engineered N glycosylation site in the cysteine-containing loop confirmed both its presence in the lumen and the transmembrane nature of nsp3. This mutant displayed an interesting intermediate phenotype in terms of DMV formation, with paired and curved membranes being formed, but DMV formation apparently being impaired. The effect of nsp3 mutations on replicase polyprotein processing was investigated, and several mutations were found to influence processing of the region downstream of nsp3 by the nsp4 main protease. When tested in an EAV reverse genetics system, none of the nsp3 mutations was tolerated, again underlining the crucial role of the protein in the arterivirus life cycle.


Assuntos
Arterivirus/química , Membranas Intracelulares/virologia , Proteínas não Estruturais Virais/fisiologia , Animais , Arterivirus/fisiologia , Arterivirus/ultraestrutura , Cavalos , Complexos Multiproteicos , Mutagênese Sítio-Dirigida , Transcrição Gênica , Proteínas não Estruturais Virais/genética , Replicação Viral
10.
Future Sci OA ; 5(1): FSO359, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30652024

RESUMO

AIM: For isolation of exosomes, differential ultracentrifugation and an isolation kit from a major vendor were compared. MATERIALS & METHODS: 'Case study' exosomes isolated from patient-derived cells from glioblastoma multiforme and a breast cancer cell line were analyzed. RESULTS: Transmission electron microscopy, dynamic light scattering, western blotting, and so forth, revealed comparable performance. Potential protein biomarkers for both diseases were also identified in the isolates using nanoLC-MS. Western blotting and nanoLC-MS also revealed negative exosome markers regarding both isolation approaches. CONCLUSION: The two isolation methods had an overall similar performance, but we hesitate to use the term 'exosome isolation' as impurities may be present with both isolation methods. NanoLC-MS can detect disease biomarkers in exosomes and is useful for critical assessment of exosome enrichment procedures.

11.
BMC Mol Biol ; 8: 5, 2007 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-17241464

RESUMO

BACKGROUND: Scavenger receptor type B class I (SR-BI), ABC transporter A1 (ABCA1) -and G1 (ABCG1) all play important roles in the reverse cholesterol transport. Reverse cholesterol transport is a mechanism whereby the body can eliminate excess cholesterol. Here, the regulation of SR-BI, ABCA1, and ABCG1 by dexamethasone (a synthetic glucocorticoid) and insulin were studied in order to gain more insight into the role of these two hormones in the cholesterol metabolism. RESULTS: By use of real time RT-PCR and Western blotting we examined the expression of our target genes. The results show that SR-BI, ABCA1 and ABCG1 mRNA expression increased in response to dexamethasone while insulin treatment reduced the expression in primary rat hepatocytes. The stimulatory effect of dexamethasone was reduced by the addition of the anti-glucocorticoid mifepristone. In HepG2 cells and THP-1 macrophages, however, the effect of dexamethasone was absent or inhibitory with no significant change in the presence of mifepristone. The latter observation may be a result of the low protein expression of glucocorticoid receptor (GR) in these cell lines. CONCLUSION: Our results illustrates that insulin and glucocorticoids, two hormones crucial in the carbohydrate metabolism, also play an important role in the regulation of genes central in reverse cholesterol transport. We found a marked difference in mRNA expression between the primary cells and the two established cell lines when studying the effect of dexamethasone which may result from the varying expression levels of GR.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Dexametasona/metabolismo , Hepatócitos/metabolismo , Insulina/metabolismo , Receptores Depuradores Classe B/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Colesterol/metabolismo , Humanos , Macrófagos/metabolismo , Ratos , Ratos Wistar , Receptores de Glucocorticoides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
PLoS One ; 12(8): e0183781, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28841684

RESUMO

Viral diseases pose a significant threat to the productivity in aquaculture. Heart- and skeletal muscle inflammation (HSMI) is an emerging disease in Atlantic salmon (Salmo salar) farming. HSMI is associated with Piscine orthoreovirus (PRV) infection, but PRV is ubiquitous in farmed Atlantic salmon and thus present also in apparently healthy individuals. This has brought speculations if additional etiological factors are required, and experiments focusing on the causal relationship between PRV and HSMI are highly warranted. A major bottleneck in PRV research has been the lack of cell lines that allow propagation of the virus. To bypass this, we propagated PRV in salmon, bled the fish at the peak of the infection, and purified virus particles from blood cells. Electron microscopy, western blot and high-throughput sequencing all verified the purity of the viral particles. Purified PRV particles were inoculated into naïve Atlantic salmon. The purified virus replicated in inoculated fish, spread to naïve cohabitants, and induced histopathological changes consistent with HSMI. PRV specific staining was demonstrated in the pathological lesions. A dose-dependent response was observed; a high dose of virus gave earlier peak of the viral load and development of histopathological changes compared to a lower dose, but no difference in the severity of the disease. The experiment demonstrated that PRV can be purified from blood cells, and that PRV is the etiological agent of HSMI in Atlantic salmon.


Assuntos
Inflamação/virologia , Músculo Esquelético/patologia , Miocárdio/patologia , Miosite/complicações , Orthoreovirus/patogenicidade , Infecções por Reoviridae/complicações , Animais
13.
Artigo em Inglês | MEDLINE | ID: mdl-27141234

RESUMO

BACKGROUND: Mice lacking glycosylated lysosomal membrane protein (Glmp (gt/gt) mice) have liver fibrosis as the predominant phenotype due to chronic liver injury. The Glmp (gt/gt) mice grow and reproduce at the same rate as their wild-type siblings. Life expectancy is around 18 months. METHODS: Wild-type and Glmp (gt/gt) mice were studied between 1 week and 18 months of age. Livers were analyzed using histological, immunohistochemical, biochemical, and qPCR analyses. RESULTS: It was shown that Glmp (gt/gt) mice were not born with liver injury; however, it appeared shortly after birth as indicated by excess collagen expression, deposition of fibrous collagen in the periportal areas, and increased levels of hydroxyproline in Glmp (gt/gt) liver. Liver functional tests indicated a chronic, mild liver injury. Markers of inflammation, fibrosis, apoptosis, and modulation of extracellular matrix increased from an early age, peaking around 4 months of age and followed by attenuation of these signals. To compensate for loss of hepatocytes, the oval cell compartment was activated, with the highest activity of the oval cells detected at 3 months of age, suggesting insufficient hepatocyte proliferation in Glmp (gt/gt) mice around this age. Although constant proliferation of hepatocytes and oval cells maintained adequate hepatic function in Glmp (gt/gt) mice, it also resulted in a higher frequency of liver tumors in older animals. CONCLUSIONS: The Glmp (gt/gt) mouse is proposed as a model for slowly progressing liver fibrosis and possibly as a model for a yet undescribed human lysosomal disorder.

14.
PLoS One ; 11(10): e0165099, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27764198

RESUMO

Membrane vesicles (MVs) are spherical particles naturally released from the membrane of Gram-negative bacteria. Bacterial MV production is associated with a range of phenotypes including biofilm formation, horizontal gene transfer, toxin delivery, modulation of host immune responses and virulence. This study reports comparative profiling of MVs from bacterial strains isolated from three widely disperse geographical areas. Mass spectrometry identified 119, 159 and 142 proteins in MVs from three different strains of Piscirickettsia salmonis isolated from salmonids in Chile (LF-89), Norway (NVI 5692) and Canada (NVI 5892), respectively. MV comparison revealed several strain-specific differences related to higher virulence capability for LF-89 MVs, both in vivo and in vitro, and stronger similarities between the NVI 5692 and NVI 5892 MV proteome. The MVs were similar in size and appearance as analyzed by electron microscopy and dynamic light scattering. The MVs from all three strains were internalized by both commercial and primary immune cell cultures, which suggest a potential role of the MVs in the bacterium's utilization of leukocytes. When MVs were injected into an adult zebrafish infection model, an upregulation of several pro-inflammatory genes were observed in spleen and kidney, indicating a modulating effect on the immune system. The present study is the first comparative analysis of P. salmonis derived MVs, highlighting strain-specific vesicle characteristics. The results further illustrate that the MV proteome from one bacterial strain is not representative of all bacterial strains within one species.


Assuntos
Proteínas de Bactérias/metabolismo , Vesículas Citoplasmáticas/metabolismo , Piscirickettsia/isolamento & purificação , Infecções por Piscirickettsiaceae/imunologia , Proteômica/métodos , Animais , Canadá , Chile , Vesículas Citoplasmáticas/imunologia , Espectrometria de Massas/métodos , Noruega , Piscirickettsia/metabolismo , Salmonidae/microbiologia , Fatores de Virulência/metabolismo , Peixe-Zebra/imunologia , Peixe-Zebra/microbiologia
15.
Sci Rep ; 6: 39066, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27966617

RESUMO

Phage display screening readily allows for the identification of a multitude of antibody specificities, but to identify optimal lead candidates remains a challenge. Here, we direct the antibody-capsid fusion away from the signal sequence-dependent secretory SEC pathway in E. coli by utilizing the intrinsic signal sequence-independent property of pIX to obtain virion integration. This approach was combined with the use of an engineered helper phage known to improve antibody pIX display and retrieval. By direct comparison with pIII display, we demonstrate that antibody display using this pIX system translates into substantially improved retrieval of desired specificities with favorable biophysical properties in de novo selection. We show that the effect was due to less E. coli host toxicity during phage propagation conferred by the lack of a signal sequence. This pIX combinatorial display platform provides a generic alternative route for obtaining good binders with high stability and may thus find broad applicability.


Assuntos
Anticorpos/metabolismo , Bacteriófagos/fisiologia , Proteínas do Capsídeo/genética , Escherichia coli/virologia , Especificidade de Anticorpos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Proteínas do Capsídeo/metabolismo , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática , Vírus Auxiliares/genética , Vírus Auxiliares/metabolismo , Vírus Auxiliares/fisiologia , Biblioteca de Peptídeos , Sinais Direcionadores de Proteínas , Vírion/genética , Vírion/metabolismo , Vírion/fisiologia
16.
PLoS One ; 10(2): e0118140, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25719195

RESUMO

Enterohemorrhagic E. coli (EHEC) is associated with severe gastrointestinal disease. Upon entering the gastrointestinal tract, EHEC is exposed to a fluctuating environment and a myriad of other bacterial species. To establish an infection, EHEC strains have to modulate their gene expression according to the GI tract environment. In order to explore the interspecies interactions between EHEC and an human intestinal commensal, the global gene expression profile was determined of EHEC O103:H25 (EHEC NIPH-11060424) co-cultured with B. thetaiotaomicron (CCUG 10774) or grown in the presence of spent medium from B. thetaiotaomicron. Microarray analysis revealed that approximately 1% of the EHEC NIPH-11060424 genes were significantly up-regulated both in co-culture (30 genes) and in the presence of spent medium (44 genes), and that the affected genes differed between the two conditions. In co-culture, genes encoding structural components of the type three secretion system were among the most affected genes with an almost 4-fold up-regulation, while the most affected genes in spent medium were involved in chemotaxis and were more than 3-fold up-regulated. The operons for type three secretion system (TTSS) are located on the Locus of enterocyte effacement (LEE) pathogenicity island, and qPCR showed that genes of all five operons (LEE1-LEE5) were up-regulated. Moreover, an increased adherence to HeLa cells was observed in EHEC NIPH-11060424 exposed to B. thetaiotaomicron. Expression of stx2 genes, encoding the main virulence factor of EHEC, was down-regulated in both conditions (co-culture/spent medium). These results show that expression of EHEC genes involved in colonization and virulence is modulated in response to direct interspecies contact between cells, or to diffusible factors released from B. thetaiotaomicron. Such interspecies interactions could allow the pathogen to recognize its predilection site and modulate its behaviour accordingly, thus increasing the efficiency of colonization of the colon mucosa, facilitating its persistence and increasing its virulence potential.


Assuntos
Bacteroides/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Regulação Bacteriana da Expressão Gênica , Consórcios Microbianos , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/metabolismo , Células HeLa , Humanos , Óperon , Toxina Shiga II/genética , Toxina Shiga II/metabolismo , Transcriptoma , Virulência/genética
17.
Comp Hepatol ; 3 Suppl 1: S16, 2004 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-14960168

RESUMO

We examined the liver of adult polar bears, arctic foxes, and rats by gold chloride staining, fluorescence microscopy for the detection of autofluorescence of vitamin A, hematoxylin-eosin staining, staining with Masson's trichrome, Ishii and Ishii's silver impregnation, and transmission electron microscopical morphometry. The liver lobules of the arctic animals showed a zonal gradient in the storage of vitamin A. The density (i.e., cell number per area) of hepatic stellate cells was essentially the same among the zones. These results indicate that the hepatic stellate cells of the polar bears and arctic foxes possess heterogeneity of vitamin A-storing capacity in their liver lobules.

18.
J Colloid Interface Sci ; 433: 76-85, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25112915

RESUMO

HYPOTHESIS: The absence of targetability is the primary inadequacy of conventional chemotherapy. Targeted drug delivery systems are conceptualized to overcome this challenge. We have designed a targetable magnetic nanocarrier consisting of a superparamagnetic iron oxide (SPIO) core and biocompatible and biodegradable poly(sebacic anhydride)-block-methyl ether poly(ethylene glycol) (PSA-mPEG) polymer shell. The idea is that this type of carriers should facilitate the targeting of cancer cells. EXPERIMENTS: PSA-mPEG was synthesized with poly-condensation and the in vitro degradation rate of the polymer was monitored by gel permeation chromatography (GPC). The magnetic nanocarriers were fabricated devoid of any surfactants and were capable of carrying high payload of hydrophobic dye. The successful encapsulation of SPIO within the polymer shell was confirmed by TEM. The results we obtained from measuring the size of SPIO loaded in polymeric NPs (SPIO-PNP) by dynamic light scattering (DLS) and iron content measurement of these particles by ICP-MS, indicate that SPIO is the most suitable carrier for cancer drug delivery applications. FINDINGS: Measuring the hydrodynamic radii of SPIO-PNPs by DLS over one month revealed the high stability of these particles at both body and room temperature. We further investigated the cell viability and cellular uptake of SPIO-PNPs in vitro with MDA-MB-231 breast cancer cells. We found that SPIO-PNPs induce negligible toxicity within a concentration range of 1-2µg/ml. The TEM micrographs of thin cross-sectioned MDA-MBA-231 cells showed internalization of SPIO-PNPs within size range of 150-200nm after 24h. This study has provided a foundation for eventually loading these nanoparticles with anti-cancer drugs for targeted cancer therapy using an external magnetic field.


Assuntos
Anidridos , Antineoplásicos , Neoplasias da Mama/tratamento farmacológico , Ácidos Decanoicos , Compostos Férricos , Nanocápsulas/química , Polietilenoglicóis , Anidridos/química , Anidridos/farmacocinética , Anidridos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ácidos Decanoicos/química , Ácidos Decanoicos/farmacocinética , Ácidos Decanoicos/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Compostos Férricos/química , Compostos Férricos/farmacocinética , Compostos Férricos/farmacologia , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/farmacologia , Humanos , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia
19.
PLoS One ; 9(5): e96419, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24797914

RESUMO

The PilE pilin subunit protein of the gonococcal Type IV pilus (Tfp) colonization factor undergoes multisite, covalent modification with the zwitterionic phospho-form modification phosphoethanolamine (PE). In a mutant lacking the pilin-like PilV protein however, PilE is modified with a mixture of PE and phosphocholine (PC). Moreover, intrastrain variation of PilE PC modification levels have been observed in backgrounds that constitutively express PptA (the protein phospho-form transferase A) required for both PE and PC modification. The molecular basis underlying phospho-form microheterogeneity in these instances remains poorly defined. Here, we examined the effects of mutations at numerous loci that disrupt or perturb Tfp assembly and observed that these mutants phenocopy the pilV mutant vis a vis phospho-form modification status. Thus, PC modification appears to be directly or indirectly responsive to the efficacy of pilin subunit interactions. Despite the complexity of contributing factors identified here, the data favor a model in which increased retention in the inner membrane may act as a key signal in altering phospho-form modification. These results also provide an alternative explanation for the variation in PilE PC levels observed previously and that has been assumed to be due to phase variation of pptA. Moreover, mass spectrometry revealed evidence for mono- and di-methylated forms of PE attached to PilE in mutants deficient in pilus assembly, directly implicating a methyltransferase-based pathway for PC synthesis in N. gonorrhoeae.


Assuntos
Proteínas de Fímbrias/metabolismo , Neisseria gonorrhoeae/metabolismo , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Etanolaminas/química , Etanolaminas/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Regulação Bacteriana da Expressão Gênica , Glicosilação , Immunoblotting , Espectrometria de Massas , Modelos Moleculares , Mutação de Sentido Incorreto , Fosforilcolina/química , Fosforilcolina/metabolismo , Pili Sexual/metabolismo , Processamento de Proteína Pós-Traducional
20.
ACS Nano ; 8(7): 7014-26, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24945994

RESUMO

Nanoparticles (NPs) enclosing antibiotics have provided promising therapy against Mycobacterium tuberculosis (Mtb) in different mammalian models. However, the NPs were not visualized in any of these animal studies. Here, we introduce the transparent zebrafish embryo as a system for noninvasive, simultaneous imaging of fluorescent NPs and the fish tuberculosis (TB) agent Mycobacterium marinum (Mm). The study was facilitated by the use of transgenic lines of macrophages, neutrophils, and endothelial cells expressing fluorescent markers readily visible in the live vertebrate. Intravenous injection of Mm led to phagocytosis by blood macrophages. These remained within the vasculature until 3 days postinfection where they started to extravasate and form aggregates of infected cells. Correlative light/electron microscopy revealed that these granuloma-like structures had significant access to the vasculature. Injection of NPs induced rapid uptake by both infected and uninfected macrophages, the latter being actively recruited to the site of infection, thereby providing an efficient targeting into granulomas. Rifampicin-loaded NPs significantly improved embryo survival and lowered bacterial load, as shown by quantitative fluorescence analysis. Our results argue that zebrafish embryos offer a powerful system for monitoring NPs in vivo and rationalize why NP therapy was so effective against Mtb in earlier studies; bacteria and NPs share the same cellular niche.


Assuntos
Portadores de Fármacos/química , Embrião não Mamífero/microbiologia , Mycobacterium marinum/efeitos dos fármacos , Nanopartículas/química , Imagem Óptica , Peixe-Zebra/embriologia , Peixe-Zebra/microbiologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Transporte Biológico , Cumarínicos/química , Portadores de Fármacos/metabolismo , Granuloma/microbiologia , Ácido Láctico/química , Macrófagos/microbiologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/fisiologia , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Rodaminas/química , Rifampina/química , Rifampina/farmacologia , Tiazóis/química , Tuberculose/microbiologia , Tuberculose/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA