Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 753: 109913, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38286353

RESUMO

This study analyses the insertion of Chlorogenic acid (CGA) in phosphatidylcholine (PC) membranes enriched with cholesterol (Chol). While cholesterol decreases the area per lipid and increases the dipole potential, CGA increases and decreases these values, respectively. When CGA is inserted into cholesterol-containing DMPC membranes, these effects cancel out, resulting in values that overlap with those of DMPC monolayers without Chol and CGA. The presence of CGA also compensates the increase of dipole potential produced by Chol which can be explain as a consequence of the orientation of CGA molecule at the interphase opposing the cholesterol dipole moieties and water dipoles. This compensatory effect is less effective when lipids lack carbonyl groups (CO). When monolayers are composed by unsaturated PCs the Chol compensation is found at higher concentrations of CGA due to the direct interaction between CGA and Chol. These results suggest that cholesterol modulates the interaction and distribution of CGA in the lipid membrane, which may have implications for its biological activity.


Assuntos
Dimiristoilfosfatidilcolina , Fosfatidilcolinas , Ácido Clorogênico , Colesterol , Bicamadas Lipídicas , Propriedades de Superfície
2.
Biochim Biophys Acta Biomembr ; 1861(6): 1197-1203, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30926364

RESUMO

This paper demonstrates by means of FTIR/ATR analysis that water molecules intercalate at different extents in the acyl chain region of lipid membranes in correlation with the hydration of the phosphate groups. This correlation is sensible to the chain length, the presence of double bonds and the phase state of the lipid membrane. The presence of carbonyl groups CO modifies the profile of hydration of the two regions as observed from the comparison of DMPC and 14:0 Diether PC. The different water populations in lipid interphases would give arrangements with different free energy states that could drive the interaction of biological effectors with membranes.


Assuntos
Bicamadas Lipídicas/química , Fosfatos/química , Fosfolipídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
3.
Rev Sci Instrum ; 90(12): 125106, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31893814

RESUMO

Water plays a key role in the functioning of natural and synthetic molecular systems. Despite several hydration studies, different techniques are employed individually for monitoring different physical features such as kinetics, dynamics, and absorption. This study describes a compact hydration cell that enables simultaneous dielectric relaxation spectroscopy (DRS) and mass loss/uptake measurements in thin organic layers under controlled humidity conditions and in a wide temperature range. This approach enabled us to correlate the physical quantities obtained during the same experiment by complementary techniques. To demonstrate the performance of this device, a 200 nm thick poly(methyl methacrylate) (PMMA) layer was measured at various relative humidity levels (0%-75%), temperatures (25-75 °C), and frequencies (DRS: 0.1 Hz-1 MHz) to study how hydration and dehydration processes affect its molecular dynamics. The results show the capability of this setup to study the changes in the PMMA film regarding the kinetics and molecular dynamics upon variation of the water content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA