Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 185(7): 1223-1239.e20, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35290801

RESUMO

While CRISPR screens are helping uncover genes regulating many cell-intrinsic processes, existing approaches are suboptimal for identifying extracellular gene functions, particularly in the tissue context. Here, we developed an approach for spatial functional genomics called Perturb-map. We applied Perturb-map to knock out dozens of genes in parallel in a mouse model of lung cancer and simultaneously assessed how each knockout influenced tumor growth, histopathology, and immune composition. Moreover, we paired Perturb-map and spatial transcriptomics for unbiased analysis of CRISPR-edited tumors. We found that in Tgfbr2 knockout tumors, the tumor microenvironment (TME) was converted to a fibro-mucinous state, and T cells excluded, concomitant with upregulated TGFß and TGFß-mediated fibroblast activation, indicating that TGFß-receptor loss on cancer cells increased TGFß bioavailability and its immunosuppressive effects on the TME. These studies establish Perturb-map for functional genomics within the tissue at single-cell resolution with spatial architecture preserved and provide insight into how TGFß responsiveness of cancer cells can affect the TME.


Assuntos
Neoplasias , Microambiente Tumoral , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genômica , Camundongos , Neoplasias/genética , Fator de Crescimento Transformador beta/genética
2.
Nat Immunol ; 24(6): 1020-1035, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37127830

RESUMO

While regulatory T (Treg) cells are traditionally viewed as professional suppressors of antigen presenting cells and effector T cells in both autoimmunity and cancer, recent findings of distinct Treg cell functions in tissue maintenance suggest that their regulatory purview extends to a wider range of cells and is broader than previously assumed. To elucidate tumoral Treg cell 'connectivity' to diverse tumor-supporting accessory cell types, we explored immediate early changes in their single-cell transcriptomes upon punctual Treg cell depletion in experimental lung cancer and injury-induced inflammation. Before any notable T cell activation and inflammation, fibroblasts, endothelial and myeloid cells exhibited pronounced changes in their gene expression in both cancer and injury settings. Factor analysis revealed shared Treg cell-dependent gene programs, foremost, prominent upregulation of VEGF and CCR2 signaling-related genes upon Treg cell deprivation in either setting, as well as in Treg cell-poor versus Treg cell-rich human lung adenocarcinomas. Accordingly, punctual Treg cell depletion combined with short-term VEGF blockade showed markedly improved control of PD-1 blockade-resistant lung adenocarcinoma progression in mice compared to the corresponding monotherapies, highlighting a promising factor-based querying approach to elucidating new rational combination treatments of solid organ cancers.


Assuntos
Neoplasias , Linfócitos T Reguladores , Animais , Camundongos , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Microambiente Tumoral , Neoplasias/metabolismo
3.
Cell ; 178(5): 1102-1114.e17, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442403

RESUMO

Caloric restriction is known to improve inflammatory and autoimmune diseases. However, the mechanisms by which reduced caloric intake modulates inflammation are poorly understood. Here we show that short-term fasting reduced monocyte metabolic and inflammatory activity and drastically reduced the number of circulating monocytes. Regulation of peripheral monocyte numbers was dependent on dietary glucose and protein levels. Specifically, we found that activation of the low-energy sensor 5'-AMP-activated protein kinase (AMPK) in hepatocytes and suppression of systemic CCL2 production by peroxisome proliferator-activator receptor alpha (PPARα) reduced monocyte mobilization from the bone marrow. Importantly, we show that fasting improves chronic inflammatory diseases without compromising monocyte emergency mobilization during acute infectious inflammation and tissue repair. These results reveal that caloric intake and liver energy sensors dictate the blood and tissue immune tone and link dietary habits to inflammatory disease outcome.


Assuntos
Restrição Calórica , Monócitos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Animais , Antígenos Ly/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Quimiocina CCL2/deficiência , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , PPAR alfa/deficiência , PPAR alfa/genética , PPAR alfa/metabolismo
4.
Cell ; 176(4): 897-912.e20, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30686579

RESUMO

A complete chart of cis-regulatory elements and their dynamic activity is necessary to understand the transcriptional basis of differentiation and function of an organ system. We generated matched epigenome and transcriptome measurements in 86 primary cell types that span the mouse immune system and its differentiation cascades. This breadth of data enable variance components analysis that suggests that genes fall into two distinct classes, controlled by either enhancer- or promoter-driven logic, and multiple regression that connects genes to the enhancers that regulate them. Relating transcription factor (TF) expression to the genome-wide accessibility of their binding motifs classifies them as predominantly openers or closers of local chromatin accessibility, pinpointing specific cis-regulatory elements where binding of given TFs is likely functionally relevant, validated by chromatin immunoprecipitation sequencing (ChIP-seq). Overall, this cis-regulatory atlas provides a trove of information on transcriptional regulation through immune differentiation and a foundational scaffold to define key regulatory events throughout the immunological genome.


Assuntos
Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Elementos Reguladores de Transcrição/genética , Animais , Sítios de Ligação/genética , Cromatina , Imunoprecipitação da Cromatina/métodos , Elementos Facilitadores Genéticos/genética , Epigenômica/métodos , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
5.
Nat Immunol ; 22(7): 914-927, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099919

RESUMO

To better define the control of immune system regulation, we generated an atlas of microRNA (miRNA) expression from 63 mouse immune cell populations and connected these signatures with assay for transposase-accessible chromatin using sequencing (ATAC-seq), chromatin immunoprecipitation followed by sequencing (ChIP-seq) and nascent RNA profiles to establish a map of miRNA promoter and enhancer usage in immune cells. miRNA complexity was relatively low, with >90% of the miRNA compartment of each population comprising <75 miRNAs; however, each cell type had a unique miRNA signature. Integration of miRNA expression with chromatin accessibility revealed putative regulatory elements for differentially expressed miRNAs, including miR-21a, miR-146a and miR-223. The integrated maps suggest that many miRNAs utilize multiple promoters to reach high abundance and identified dominant and divergent miRNA regulatory elements between lineages and during development that may be used by clustered miRNAs, such as miR-99a/let-7c/miR-125b, to achieve distinct expression. These studies, with web-accessible data, help delineate the cis-regulatory elements controlling miRNA signatures of the immune system.


Assuntos
Perfilação da Expressão Gênica , Sistema Imunitário/metabolismo , MicroRNAs/genética , Regiões Promotoras Genéticas , Transcriptoma , Animais , Células Cultivadas , Imunoprecipitação da Cromatina , Biologia Computacional , Regulação da Expressão Gênica no Desenvolvimento , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , RNA-Seq
6.
Cell ; 175(4): 1141-1155.e16, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30343902

RESUMO

CRISPR pools are being widely employed to identify gene functions. However, current technology, which utilizes DNA as barcodes, permits limited phenotyping and bulk-cell resolution. To enable novel screening capabilities, we developed a barcoding system operating at the protein level. We synthesized modules encoding triplet combinations of linear epitopes to generate >100 unique protein barcodes (Pro-Codes). Pro-Code-expressing vectors were introduced into cells and analyzed by CyTOF mass cytometry. Using just 14 antibodies, we detected 364 Pro-Code populations; establishing the largest set of protein-based reporters. By pairing each Pro-Code with a different CRISPR, we simultaneously analyzed multiple phenotypic markers, including phospho-signaling, on dozens of knockouts. Pro-Code/CRISPR screens found two interferon-stimulated genes, the immunoproteasome component Psmb8 and a chaperone Rtp4, are important for antigen-dependent immune editing of cancer cells and identified Socs1 as a negative regulator of Pd-l1. The Pro-Code technology enables simultaneous high-dimensional protein-level phenotyping of 100s of genes with single-cell resolution.


Assuntos
Sistemas CRISPR-Cas , Citometria de Fluxo/métodos , Genômica/métodos , Espectrometria de Massas/métodos , Análise de Célula Única/métodos , Animais , Epitopos/química , Epitopos/classificação , Epitopos/genética , Células HEK293 , Humanos , Imunofenotipagem/métodos , Células Jurkat , Camundongos Endogâmicos BALB C , Proteoma/química , Proteoma/classificação , Proteoma/genética , Células THP-1
7.
Immunity ; 48(2): 271-285.e5, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466757

RESUMO

Stem cells are critical for the maintenance of many tissues, but whether their integrity is maintained in the face of immunity is unclear. Here we found that cycling epithelial stem cells, including Lgr5+ intestinal stem cells, as well as ovary and mammary stem cells, were eliminated by activated T cells, but quiescent stem cells in the hair follicle and muscle were resistant to T cell killing. Immune evasion was an intrinsic property of the quiescent stem cells resulting from systemic downregulation of the antigen presentation machinery, including MHC class I and TAP proteins, and is mediated by the transactivator NLRC5. This process was reversed upon stem cell entry into the cell cycle. These studies identify a link between stem cell quiescence, antigen presentation, and immune evasion. As cancer-initiating cells can derive from stem cells, these findings may help explain how the earliest cancer cells evade immune surveillance.


Assuntos
Folículo Piloso/citologia , Evasão da Resposta Imune , Vigilância Imunológica , Células-Tronco/imunologia , Animais , Apresentação de Antígeno , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Músculos/citologia , Receptores Acoplados a Proteínas G/fisiologia , Evasão Tumoral
9.
Nature ; 530(7589): 177-83, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26814963

RESUMO

Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia's strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C4A. Human C4 protein localized to neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals with schizophrenia.


Assuntos
Complemento C4/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Esquizofrenia/genética , Alelos , Sequência de Aminoácidos , Animais , Axônios/metabolismo , Sequência de Bases , Encéfalo/metabolismo , Encéfalo/patologia , Complemento C4/química , Via Clássica do Complemento , Dendritos/metabolismo , Dosagem de Genes/genética , Regulação da Expressão Gênica/genética , Haplótipos/genética , Humanos , Complexo Principal de Histocompatibilidade/genética , Camundongos , Modelos Animais , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Fatores de Risco , Esquizofrenia/patologia , Sinapses/metabolismo
10.
Nature ; 536(7616): 285-91, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27535533

RESUMO

Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.


Assuntos
Exoma/genética , Variação Genética/genética , Análise Mutacional de DNA , Conjuntos de Dados como Assunto , Humanos , Fenótipo , Proteoma/genética , Doenças Raras/genética , Tamanho da Amostra
11.
Nature ; 506(7487): 179-84, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24463507

RESUMO

Inherited alleles account for most of the genetic risk for schizophrenia. However, new (de novo) mutations, in the form of large chromosomal copy number changes, occur in a small fraction of cases and disproportionally disrupt genes encoding postsynaptic proteins. Here we show that small de novo mutations, affecting one or a few nucleotides, are overrepresented among glutamatergic postsynaptic proteins comprising activity-regulated cytoskeleton-associated protein (ARC) and N-methyl-d-aspartate receptor (NMDAR) complexes. Mutations are additionally enriched in proteins that interact with these complexes to modulate synaptic strength, namely proteins regulating actin filament dynamics and those whose messenger RNAs are targets of fragile X mental retardation protein (FMRP). Genes affected by mutations in schizophrenia overlap those mutated in autism and intellectual disability, as do mutation-enriched synaptic pathways. Aligning our findings with a parallel case-control study, we demonstrate reproducible insights into aetiological mechanisms for schizophrenia and reveal pathophysiology shared with other neurodevelopmental disorders.


Assuntos
Modelos Neurológicos , Mutação/genética , Rede Nervosa/metabolismo , Vias Neurais/metabolismo , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Sinapses/metabolismo , Transtornos Globais do Desenvolvimento Infantil/genética , Proteínas do Citoesqueleto/metabolismo , Exoma/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Humanos , Deficiência Intelectual/genética , Taxa de Mutação , Rede Nervosa/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/fisiopatologia , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/metabolismo , Especificidade por Substrato
12.
N Engl J Med ; 371(26): 2477-87, 2014 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-25426838

RESUMO

BACKGROUND: Cancers arise from multiple acquired mutations, which presumably occur over many years. Early stages in cancer development might be present years before cancers become clinically apparent. METHODS: We analyzed data from whole-exome sequencing of DNA in peripheral-blood cells from 12,380 persons, unselected for cancer or hematologic phenotypes. We identified somatic mutations on the basis of unusual allelic fractions. We used data from Swedish national patient registers to follow health outcomes for 2 to 7 years after DNA sampling. RESULTS: Clonal hematopoiesis with somatic mutations was observed in 10% of persons older than 65 years of age but in only 1% of those younger than 50 years of age. Detectable clonal expansions most frequently involved somatic mutations in three genes (DNMT3A, ASXL1, and TET2) that have previously been implicated in hematologic cancers. Clonal hematopoiesis was a strong risk factor for subsequent hematologic cancer (hazard ratio, 12.9; 95% confidence interval, 5.8 to 28.7). Approximately 42% of hematologic cancers in this cohort arose in persons who had clonality at the time of DNA sampling, more than 6 months before a first diagnosis of cancer. Analysis of bone marrow-biopsy specimens obtained from two patients at the time of diagnosis of acute myeloid leukemia revealed that their cancers arose from the earlier clones. CONCLUSIONS: Clonal hematopoiesis with somatic mutations is readily detected by means of DNA sequencing, is increasingly common as people age, and is associated with increased risks of hematologic cancer and death. A subset of the genes that are mutated in patients with myeloid cancers is frequently mutated in apparently healthy persons; these mutations may represent characteristic early events in the development of hematologic cancers. (Funded by the National Human Genome Research Institute and others.).


Assuntos
Sangue , Transformação Celular Neoplásica/genética , Neoplasias Hematológicas/genética , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Mutação , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Células Clonais , Análise Mutacional de DNA , Exoma , Neoplasias Hematológicas/fisiopatologia , Humanos , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
13.
J Immunother Cancer ; 11(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37487664

RESUMO

BACKGROUND: Cancer immunotherapies are generally effective in patients whose tumors contain a priori primed T-cells reactive to tumor antigens (TA). One approach to prime TA-reactive T-cells is to administer immunostimulatory molecules, cells, or pathogens directly to the tumor site, that is, in situ vaccination (ISV). We recently described an ISV using Flt3L to expand and recruit dendritic cells (DC), radiotherapy to load DC with TA, and pattern recognition receptor agonists (PRRa) to activate TA-loaded DC. While ISV trials using synthetic PRRa have yielded systemic tumor regressions, the optimal method to activate DCs is unknown. METHODS: To discover optimal DC activators and increase access to clinical grade reagents, we assessed whether viral or bacterial components found in common pathogen vaccines are an effective source of natural PRRa (naPRRa). Using deep profiling (155-metric) of naPRRa immunomodulatory effects and gene editing of specific PRR, we defined specific signatures and molecular mechanisms by which naPRRa potentiate T-cell priming. RESULTS: We observed that vaccine naPRRa can be even more potent in activating Flt3L-expanded murine and human DCs than synthetic PRRa, promoting cross-priming of TA-reactive T-cells. We developed a mechanistically diverse naPRRa combination (BCG, PedvaxHIB, Rabies) and noted more potent T-cell cross-priming than with any single naPRRa. The naPRRa triplet-as part of Flt3L-primed ISV-induced greater intratumoral CD8 T-cell infiltration, T-cells reactive to a newly defined tumorous neoantigen, durable tumor regressions. CONCLUSIONS: This work provides rationale for the translation of pathogen vaccines as FDA-approved clinical-grade DC activators which could be exploited as immune-stimulants for early phase trials.


Assuntos
Linfócitos T CD8-Positivos , Apresentação Cruzada , Humanos , Animais , Camundongos , Vacinação , Edição de Genes , Imunização
14.
Nat Neurosci ; 23(2): 185-193, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31932770

RESUMO

Protein-coding de novo mutations (DNMs) are significant risk factors in many neurodevelopmental disorders, whereas schizophrenia (SCZ) risk associated with DNMs has thus far been shown to be modest. We analyzed DNMs from 1,695 SCZ-affected trios and 1,077 published SCZ-affected trios to better understand the contribution to SCZ risk. Among 2,772 SCZ probands, exome-wide DNM burden remained modest. Gene set analyses revealed that SCZ DNMs were significantly concentrated in genes that were highly expressed in the brain, that were under strong evolutionary constraint and/or overlapped with genes identified in other neurodevelopmental disorders. No single gene surpassed exome-wide significance; however, 16 genes were recurrently hit by protein-truncating DNMs, corresponding to a 3.15-fold higher rate than the mutation model expectation (permuted 95% confidence interval: 1-10 genes; permuted P = 3 × 10-5). Overall, DNMs explain a small fraction of SCZ risk, and larger samples are needed to identify individual risk genes, as coding variation across many genes confers risk for SCZ in the population.


Assuntos
Predisposição Genética para Doença/genética , Esquizofrenia/genética , Adulto , Criança , Família , Feminino , Humanos , Masculino , Mutação , Pais , Sequenciamento do Exoma
15.
J Exp Med ; 216(10): 2265-2281, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31350310

RESUMO

Microglia, the brain resident macrophages, critically shape forebrain neuronal circuits. However, their precise function in the cerebellum is unknown. Here we show that human and mouse cerebellar microglia express a unique molecular program distinct from forebrain microglia. Cerebellar microglial identity was driven by the CSF-1R ligand CSF-1, independently of the alternate CSF-1R ligand, IL-34. Accordingly, CSF-1 depletion from Nestin+ cells led to severe depletion and transcriptional alterations of cerebellar microglia, while microglia in the forebrain remained intact. Strikingly, CSF-1 deficiency and alteration of cerebellar microglia were associated with reduced Purkinje cells, altered neuronal function, and defects in motor learning and social novelty interactions. These findings reveal a novel CSF-1-CSF-1R signaling-mediated mechanism that contributes to motor function and social behavior.


Assuntos
Comportamento Animal/fisiologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Microglia/metabolismo , Atividade Motora/fisiologia , Células de Purkinje/metabolismo , Transdução de Sinais/fisiologia , Comportamento Social , Animais , Humanos , Fator Estimulador de Colônias de Macrófagos/genética , Camundongos , Camundongos Transgênicos , Células de Purkinje/citologia , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA