Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(10): e202303218, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38109648

RESUMO

Spent nuclear fuel contains heavy element fission products that must be separated for effective reprocessing for a safe and sustainable nuclear fuel cycle. 93 Zr and 99 Tc are high-yield fission products that co-transport in liquid-liquid extraction processes. Here we seek atomic-level information of this co-extraction process, as well as fundamental knowledge about ZrIV (and HfIV ) aqueous speciation in the presence of topology-directing ligands such as pertechnetate (TcO4 - ) and non-radioactive surrogate perrhenate (ReO4 - ). In this context, we show that the flat tetrameric oxyhydroxyl-cluster [MIV 4 (OH)8 (H2 O)16 ]8+ (and related polymers) is dissociated by perrhenate/pertechnetate to yield isostructural dimers, M2 (OH)2 (XO4 - )6 (H2 O)6 ⋅ 3H2 O (M=Zr/HfIV ; X=Re/TcVII ), elucidated by single-crystal X-ray diffraction. We used these model compounds to understand the pervasive 93 Zr-99 Tc coextraction with further speciation studies in water, nitric acid, and tetrabutylphosphate (TBP) -kerosene; where the latter two media are relevant to nuclear fuel reprocessing. SAXS (small angle X-ray scattering), compositional evaluation, and where experimentally feasible, ESI-MS (electrospray ionization mass spectrometry) showed that perrhenate/pertechnetate influence Zr/HfIV -speciation in water. In Zr-XO4 solvent extraction studies to simulate fuel reprocessing, we provide evidence that TcO4 - enhances extraction of ZrIV , and compositional analysis of the extracted metal-complexes (Zr-ReO4 study) is consistent with the crystallized ZrIV 2 (OH)2 (ReVII O4 - )6 (H2 O)6 ⋅dimer.

2.
Inorg Chem ; 61(33): 13015-13021, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35944017

RESUMO

Recently, metal halide perovskites (MHPs) have emerged as a new class of materials for optical and electronic applications such as solar cells and ionizing radiation detectors. Although the solution-processability of MHPs is among their greatest advantages, the solution chemistries of most metal halide systems and their relationship with the observed structural and chemical diversity are poorly understood. In this work, we study the solution chemistry of a model indium halide system, methylammonium (MA)-In-Br, using a combination of the UV-vis spectroscopy, electrospray ionization mass spectrometry (ESI-MS) measurements, small-angle X-ray scattering (SAXS), and density functional theory (DFT) calculations. Our results show that indium could form either octahedral [InBr63-] or tetrahedral [InBr4-] anions in solution or a combination of both, depending on the loading ratios of MABr and InBr3 reactants. Understanding the solution chemistry of this system and recognizing the optical fingerprints of these polyanions allow for targeted crystallization of two novel compounds: MAInBr4 featuring tetrahedral [InBr4-] anions and MA2InBr5 containing both octahedral [InBr63-] and tetrahedral [InBr4-] anions. Further increase of the MABr content leads to the formation of previously reported MA4InBr7, containing only octahedral [InBr63-] anions separated by Br- anions. Our results suggest that understanding the solution chemistry of multinary metal halide systems could be a valuable tool for discovering functional materials for practical applications.

3.
Inorg Chem ; 59(15): 10768-10784, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32687708

RESUMO

A series of model dinuclear manganese(IV) complexes of the general formula [(H3COH)(L')MnIV(µ-L)2MnIV(L')(HOCH3)] is presented. These compounds feature capping 4,6,10-trihydroxo-3,5,7-trimethyl-1,4,6,10-tetraazaadamantane ligands derived from a polydentate oxime compound (L'). The bridging ligands L include azide (1), methoxide (2), and oxalate (3) anions. The magnetic properties and high-field (HF) EPR spectra of 1-3 were studied in detail and revealed varying weak antiferromagnetic coupling and modest zero-field splitting (ZFS) of the local quartet spin sites. Our HF EPR studies provide insight into the dimer ZFS, including determination of the corresponding parameters by giant spin approach for methoxido-bridged complex 2. Furthermore, the physicochemical properties of 1-3 were studied using IR, UV-vis, and electrochemical (cyclic voltammetry) methods. Theoretical exchange coupling constants were obtained using broken-symmetry (BS) density functional theory (DFT). Computational estimates of the local quartet ground spins state ZFSs of 1-3 were obtained using coupled-perturbed (CP) DFT and complete active space self-consistent field (CASSCF) calculations with n-electron valence state perturbation theory (NEVPT2) corrections. We found that the CP DFT calculations which used the B3LYP functional and models derived experimental structures performed best in reproducing both the magnitude and the sign of the experimental D values. Moreover, our computational investigation of 1-3 suggests that we observe metals sites which have an increased +3 character and are supported by redox noninnocent 4,6,10-trihydroxo-3,5,7-trimethyl-1,4,6,10-tetraazaadamantane ligands. The latter conclusion is further corroborated by the observation that the free ligand can be readily oxidized to yield a NO-based radical.

4.
J Mater Chem C Mater ; 12(25): 9372-9384, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39308752

RESUMO

Transition metal cation intercalation between the layers of two-dimensional (2D) metal halides is an underexplored research area. In this work we focus on the synthesis and physical property characterizations of two layered hybrid lead halides: a new compound [Cu(O2C-CH2-NH2)2]Pb2Br4 and the previously reported [Cu(O2C-(CH2)3-NH3)2]PbBr4. These compounds exhibit 2D layered crystal structures with incorporated Cu2+ between the metal halide layers, which is achieved by combining Cu(II) and lead bromide with suitable amino acid precursors. The resultant [Cu(O2C-(CH2)3-NH3)2]PbBr4 adopts a 2D layered perovskite structure, whereas the new compound [Cu(O2C-CH2-NH2)2]Pb2Br4 crystallizes with a new structure type based on edge-sharing dodecahedral PbBr5O3 building blocks. [Cu(O2C-CH2-NH2)2]Pb2Br4 is a semiconductor with a bandgap of 3.25 eV. It shows anisotropic charge transport properties with a semiconductor resistivity of 1.44×1010 Ω·cm (measured along the a-axis) and 2.17×1010 Ω·cm (along the bc-plane), respectively. The fabricated prototype detector based on this material showed response to soft low-energy X-rays at 8 keV with a detector sensitivity of 1462.7 µCGy-1cm-2, indicating its potential application for ionizing radiation detection. These encouraging results are discussed together with the results from density functional theory calculations, optical, magnetic, and thermal property characterization experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA