Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(3): 035101, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307081

RESUMO

Magnetic reconnection is a ubiquitous and fundamental process in plasmas by which magnetic fields change their topology and release magnetic energy. Despite decades of research, the physics governing the reconnection process in many parameter regimes remains controversial. Contemporary reconnection theories predict that long, narrow current sheets are susceptible to the tearing instability and split into isolated magnetic islands (or plasmoids), resulting in an enhanced reconnection rate. While several experimental observations of plasmoids in the regime of low-to-intermediate ß (where ß is the ratio of plasma thermal pressure to magnetic pressure) have been made, there is a relative lack of experimental evidence for plasmoids in the high-ß reconnection environments which are typical in many space and astrophysical contexts. Here, we report strong experimental evidence for plasmoid formation in laser-driven high-ß reconnection experiments.

2.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38980127

RESUMO

An x-ray multilayer mirror on a spherical substrate designed for near-normal incidence with a photon energy of ∼738 eV (F Heα) was procured and tested. This device is intended to be used for in-flight radiography of the shell in inertial confinement fusion experiments with cryogenic targets on the OMEGA laser at the Laboratory for Laser Energetics. Experiments in self-emission on a small (∼10 J) laser system showed that the reflectivity of the mirror is high enough to record an image at laser energies as low as 0.1 J. A second set of tests in backlighting geometry on a larger (kJ)-scale, short-pulse laser yielded usable radiographs with laser energies as low as 40 J with a spatial resolution of ∼10 µm.

3.
Phys Rev E ; 109(4-2): 045209, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755937

RESUMO

Precise modeling of shocks in inertial confinement fusion implosions is critical for obtaining the desired compression in experiments. Shock velocities and postshock conditions are determined by laser-energy deposition, heat conduction, and equations of state. This paper describes experiments at the National Ignition Facility (NIF) [E. M. Campbell and W. J. Hogan, Plasma Phys. Control. Fusion 41, B39 (1999)10.1088/0741-3335/41/12B/303] where multiple shocks are launched into a cone-in-shell target made of polystyrene, using laser-pulse shapes with two or three pickets and varying on-target intensities. Shocks are diagnosed using the velocity interferometric system for any reflector (VISAR) diagnostic [P. M. Celliers et al., Rev. Sci. Instrum. 75, 4916 (2004)0034-674810.1063/1.1807008]. Simulated and inferred shock velocities agree well for the range of intensities studied in this work. These directly-driven shock-timing experiments on the NIF provide a good measure of early-time laser-energy coupling. The validated models add to the credibility of direct-drive-ignition designs at the megajoule scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA