Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38002954

RESUMO

The underlying genetic susceptibility for Alzheimer's disease (AD) is not yet fully understood. The heterogeneous nature of the disease challenges genetic association studies. Endophenotype approaches can help to address this challenge by more direct interrogation of biological traits related to the disease. AD endophenotypes based on amyloid-ß, tau, and neurodegeneration (A/T/N) biomarkers and cognitive performance were selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort (N = 1565). A genome-wide association study (GWAS) of quantitative phenotypes was performed using an SNP main effect and an SNP by Diagnosis interaction (SNP × DX) model to identify disease stage-specific genetic effects. Nine loci were identified as study-wide significant with one or more A/T/N endophenotypes in the main effect model, as well as additional findings significantly associated with cognitive measures. These nine loci include SNPs in or near the genes APOE, SRSF10, HLA-DQB1, XKR3, and KIAA1671. The SNP × DX model identified three study-wide significant genetic loci (BACH2, EP300, and PACRG-AS1) with a neuroprotective effect in later AD stage endophenotypes. An endophenotype approach identified novel genetic associations and provided insight into the molecular mechanisms underlying the genetic associations that may otherwise be missed using conventional case-control study designs.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico , Endofenótipos , Estudo de Associação Genômica Ampla , Proteínas tau/genética , Estudos de Casos e Controles , Fatores de Processamento de Serina-Arginina/genética , Proteínas Repressoras/genética , Proteínas de Ciclo Celular/genética
2.
medRxiv ; 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36993271

RESUMO

Determining the genetic architecture of Alzheimer's disease (AD) pathologies can enhance mechanistic understanding and inform precision medicine strategies. Here, we performed a genome-wide association study of cortical tau quantified by positron emission tomography in 3,136 participants from 12 independent studies. The CYP1B1-RMDN2 locus was associated with tau deposition. The most significant signal was at rs2113389, which explained 4.3% of the variation in cortical tau, while APOE4 rs429358 accounted for 3.6%. rs2113389 was associated with higher tau and faster cognitive decline. Additive effects, but no interactions, were observed between rs2113389 and diagnosis, APOE4 , and Aß positivity. CYP1B1 expression was upregulated in AD. rs2113389 was associated with higher CYP1B1 expression and methylation levels. Mouse model studies provided additional functional evidence for a relationship between CYP1B1 and tau deposition but not Aß. These results may provide insight into the genetic basis of cerebral tau and novel pathways for therapeutic development in AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA