Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283273

RESUMO

BACKGROUND: Peripheral immune cells critically contribute to the clinical-pathological progression of neurodegenerative diseases and also represent a reliable frame for translational applications. However, data on progressive supranuclear palsy (PSP) are almost scarce in this regard. OBJECTIVE: Our goal is to provide a broad biological characterization of peripheral immune cells in a selected PSP cohort. METHODS: Seventy-one PSP patients scored on the PSP Rating Scale (PSPRS), and 59 controls were enrolled. The blood cell count was collected, together with the neutrophil-to-lymphocyte ratio (NLR) calculation. In a subgroup of patients and controls, the peripheral blood mononuclear cells (PBMCs) were analyzed by the mitochondrial bioenergetic performance and the western blot assay of the nuclear factor erythroid 2-related factor (NRF2)/heme oxygenase 1 (HO-1) pathway and the total tau (t-tau) and phosphorylated tau (p-tau) proteins. Case-control comparison and correlation analyses were performed. RESULTS: PSP patients had a NLR higher than controls, with increased circulating neutrophils. The leukocyte metabolism was also globally increased and the NRF2/HO-1 pathway activated in patients. P-tau, but not t-tau, significantly accumulated in PSP PBMCs and inversely correlated with the PSPRS. CONCLUSIONS: PSP displays a systemic inflammatory shift of the peripheral immunity, which may justify a metabolic reprogramming of the blood leukocytes. Consistently, the NRF2/HO-1 pathway, a master regulator of inflammatory and metabolic response, was activated. PBMCs also engulf tau proteins, especially p-tau, in a way inverse to the disease severity, allowing for a peripheral tracking of tauopathy in patients. Immunometabolic targets may, therefore, gain relevance to PSP in biomarker or therapeutic purposes. © 2024 International Parkinson and Movement Disorder Society.

2.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542223

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is considered the prototype of motor neuron disease, characterized by motor neuron loss and muscle waste. A well-established pathogenic hallmark of ALS is mitochondrial failure, leading to bioenergetic deficits. So far, pharmacological interventions for the disease have proven ineffective. Trimetazidine (TMZ) is described as a metabolic modulator acting on different cellular pathways. Its efficacy in enhancing muscular and cardiovascular performance has been widely described, although its molecular target remains elusive. We addressed the molecular mechanisms underlying TMZ action on neuronal experimental paradigms. To this aim, we treated murine SOD1G93A-model-derived primary cultures of cortical and spinal enriched motor neurons, as well as a murine motor-neuron-like cell line overexpressing SOD1G93A, with TMZ. We first characterized the bioenergetic profile of the cell cultures, demonstrating significant mitochondrial dysfunction that is reversed by acute TMZ treatments. We then investigated the effect of TMZ in promoting autophagy processes and its impact on mitochondrial morphology. Finally, we demonstrated the effectiveness of TMZ in terms of the mitochondrial functionality of ALS-rpatient-derived peripheral blood mononuclear cells (PBMCs). In summary, our results emphasize the concept that targeting mitochondrial dysfunction may represent an effective therapeutic strategy for ALS. The findings demonstrate that TMZ enhances mitochondrial performance in motor neuron cells by activating autophagy processes, particularly mitophagy. Although further investigations are needed to elucidate the precise molecular pathways involved, these results hold critical implications for the development of more effective and specific derivatives of TMZ for ALS treatment.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Mitocondriais , Trimetazidina , Camundongos , Animais , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/metabolismo , Trimetazidina/farmacologia , Trimetazidina/uso terapêutico , Camundongos Transgênicos , Leucócitos Mononucleares/metabolismo , Superóxido Dismutase/metabolismo , Autofagia , Modelos Animais de Doenças
3.
Front Pharmacol ; 15: 1360099, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590640

RESUMO

Background: Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease characterized by the degeneration of motor neurons that leads to muscle wasting and atrophy. Epidemiological and experimental evidence suggests a causal relationship between ALS and physical activity (PA). However, the impact of PA on motor neuron loss and sarcopenia is still debated, probably because of the heterogeneity and intensities of the proposed exercises. With this study, we aimed to clarify the effect of intense endurance exercise on the onset and progression of ALS in the SOD1-G93A mouse model. Methods: We randomly selected four groups of twelve 35-day-old female mice. SOD1-G93A and WT mice underwent intense endurance training on a motorized treadmill for 8 weeks, 5 days a week. During the training, we measured muscle strength, weight, and motor skills and compared them with the corresponding sedentary groups to define the disease onset. At the end of the eighth week, we analyzed the skeletal muscle-motor neuron axis by histological and molecular techniques. Results: Intense endurance exercise anticipates the onset of the disease by 1 week (age of the onset: trained SOD1-G93A = 63.17 ± 2.25 days old; sedentary SOD1-G93A = 70.75 ± 2.45 days old). In SOD1-G93A mice, intense endurance exercise hastens the muscular switch to a more oxidative phenotype and worsens the denervation process by dismantling neuromuscular junctions in the tibialis anterior, enhancing the Wallerian degeneration in the sciatic nerve, and promoting motor neuron loss in the spinal cord. The training exacerbates neuroinflammation, causing immune cell infiltration in the sciatic nerve and a faster activation of astrocytes and microglia in the spinal cord. Conclusion: Intense endurance exercise, acting on skeletal muscles, worsens the pathological hallmarks of ALS, such as denervation and neuroinflammation, brings the onset forward, and accelerates the progression of the disease. Our findings show the potentiality of skeletal muscle as a target for both prognostic and therapeutic strategies; the preservation of skeletal muscle health by specific intervention could counteract the dying-back process and protect motor neurons from death. The physiological characteristics and accessibility of skeletal muscle further enhance its appeal as a therapeutic target.

4.
Mol Metab ; 76: 101783, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37517520

RESUMO

OBJECTIVE: Accumulating evidence suggests that dysfunctional adipose tissue (AT) plays a major role in the risk of developing multiple sclerosis (MS), the most common immune-mediated and demyelinating disease of the central nervous system. However, the contribution of adipose tissue to the etiology and progression of MS is still obscure. This study aimed at deciphering the responses of AT in experimental autoimmune encephalomyelitis (EAE), the best characterized animal model of MS. RESULTS AND METHODS: We observed a significant AT loss in EAE mice at the onset of disease, with a significant infiltration of M1-like macrophages and fibrosis in the AT, resembling a cachectic phenotype. Through an integrative and multilayered approach, we identified lipocalin2 (LCN2) as the key molecule released by dysfunctional adipocytes through redox-dependent mechanism. Adipose-derived LCN2 shapes the pro-inflammatory macrophage phenotype, and the genetic deficiency of LCN2 specifically in AT reduced weight loss as well as inflammatory macrophage infiltration in spinal cord in EAE mice. Mature adipocytes downregulating LCN2 reduced lipolytic response to inflammatory stimuli (e.g. TNFα) through an ATGL-mediated mechanism. CONCLUSIONS: Overall data highlighted a role LCN2 in exacerbating inflammatory phenotype in EAE model, suggesting a pathogenic role of dysfunctional AT in MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Encefalomielite Autoimune Experimental/patologia , Lipocalina-2/genética , Macrófagos , Esclerose Múltipla/patologia , Sistema Nervoso Central
5.
FEBS J ; 289(21): 6484-6517, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34143565

RESUMO

The characterization of fibro/adipogenic progenitor cells (FAPs) in the skeletal muscle has contributed to modify the monocentric view of muscle regeneration beyond muscle satellite cells (MuSCs). Now, we are aware that each population of the muscle niche plays a critical role in modulating homeostasis and regeneration. In the healthy muscle, FAPs contribute to maintain tissue homeostasis and assist MuSCs to cope with limited insults. Here, FAPs sense and integrate niche signals that keep in check their differentiation potential. The disruption of these niche cues leads to FAP differentiation into adipocytes and fibroblasts, both detrimental hallmarks of a large variety of muscle wasting diseases. FAP biology is still in its infancy, and current efforts are focused on the understanding of the molecular circuits governing their double-edged behavior. The present review offers a detailed overview of the pathways and metabolic routes that can be modulated to halt and redirect their fibro/adipogenic potential while favoring their supportive role in muscle regeneration. Finally, we discuss on how single-cell technologies have contributed to resolve FAP transitional states with distinctive roles in muscle regeneration and myopathies.


Assuntos
Adipócitos , Adipogenia , Adipócitos/metabolismo , Diferenciação Celular , Transdução de Sinais , Músculo Esquelético/metabolismo , Regeneração/genética
6.
Int J Biochem Cell Biol ; 145: 106193, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35257890

RESUMO

The scaffold protein Tumor Necrosis Factor Receptor-Associated Factor 2 (TRAF2) has been reported to play a key role in the endoplasmic reticulum (ER) stress-induced activation of c-Jun N-terminal Kinase (JNK) and hence autophagy. Autophagy is a highly conserved catabolic process, whose dysregulation is involved in the pathogenesis of various human diseases, including cancer. We investigated the involvement of TRAF2 in autophagy regulation in the human leukemic HAP1 cell line, under both basal and ER stress conditions. In TRAF2-knockout HAP1 cell line (KO), the basal autophagic flux was higher than in the parental cell line (WT). Moreover, tunicamycin-induced ER stress stimulated JNK activation and autophagy both in WT and KO HAP1. On the other hand, re-expression of a TRAF2 C-terminal fragment (residues ,310-501), in a TRAF2-KO cellular background, rendered HAP1 cells unable to activate both JNK and autophagy upon ER stress induction. Of note, this apparent dominant negative effect of the C-terminal fragment was observed even in the absence of the endogenous, full-length TRAF2 molecule. Furthermore, the expression of the C-terminal fragment resulted in both protein kinase B (AKT) pathway activation and increased resistance to the toxic effects induced by prolonged ER stress conditions. These findings indicate that TRAF2 is dispensable for the activation of both JNK and autophagy in HAP1 cells, while the TRAF2 C-terminal domain may play an autonomous role in regulating the cellular response to ER stress.


Assuntos
Estresse do Retículo Endoplasmático , Leucemia , Fator 2 Associado a Receptor de TNF/metabolismo , Apoptose , Autofagia/genética , Estresse do Retículo Endoplasmático/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Leucemia/genética , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/farmacologia , Ubiquitina-Proteína Ligases/metabolismo
7.
Cell Metab ; 34(4): 533-548.e12, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35305295

RESUMO

Recent findings have demonstrated that mitochondria can be transferred between cells to control metabolic homeostasis. Although the mitochondria of brown adipocytes comprise a large component of the cell volume and undergo reorganization to sustain thermogenesis, it remains unclear whether an intercellular mitochondrial transfer occurs in brown adipose tissue (BAT) and regulates adaptive thermogenesis. Herein, we demonstrated that thermogenically stressed brown adipocytes release extracellular vesicles (EVs) that contain oxidatively damaged mitochondrial parts to avoid failure of the thermogenic program. When re-uptaken by parental brown adipocytes, mitochondria-derived EVs reduced peroxisome proliferator-activated receptor-γ signaling and the levels of mitochondrial proteins, including UCP1. Their removal via the phagocytic activity of BAT-resident macrophages is instrumental in preserving BAT physiology. Depletion of macrophages in vivo causes the abnormal accumulation of extracellular mitochondrial vesicles in BAT, impairing the thermogenic response to cold exposure. These findings reveal a homeostatic role of tissue-resident macrophages in the mitochondrial quality control of BAT.


Assuntos
Tecido Adiposo Marrom , Termogênese , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Termogênese/fisiologia , Proteína Desacopladora 1/metabolismo
8.
Cell Death Dis ; 12(1): 122, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495447

RESUMO

The term micro-heterogeneity refers to non-genetic cell to cell variability observed in a bell-shaped distribution of the expression of a trait within a population. The contribution of micro-heterogeneity to physiology and pathology remains largely uncharacterised. To address such an issue, we investigated the impact of heterogeneity in skeletal muscle fibro/adipogenic progenitors (FAPs) isolated from an animal model of Duchenne muscular dystrophy (DMD), the mdx mouse. FAPs play an essential role in muscle homoeostasis. However, in pathological conditions or ageing, they are the source of intramuscular infiltrations of fibrotic or adipose tissue. By applying a multiplex flow cytometry assay, we characterised and purified from mdx muscles two FAP cell states expressing different levels of SCA-1. The two cell states are morphologically identical and repopulate each other after several growth cycles. However, they differ in their in vitro behaviour. Cells expressing higher levels of SCA-1 (SCA1-High-FAPs) differentiate more readily into adipocytes while, when exposed to a fibrogenic stimulation, increase the expression of Col1a1 and Timp1 mRNA. A transcriptomic analysis confirmed the adipogenic propensity of SCA1-High-FAPs. In addition, SCA1-High-FAPs proliferate more extensively ex vivo and display more proliferating cells in dystrophic muscles in comparison to SCA1-Low-FAPs. Adipogenesis of both FAP cell states is inhibited in vitro by leucocytes from young dystrophic mice, while leucocytes isolated from aged dystrophic mice are less effective in limiting the adipogenesis of SCA1-High-FAPs suggesting a differential regulatory effect of the microenvironment on micro-heterogeneity. Our data suggest that FAP micro-heterogeneity is modulated in pathological conditions and that this heterogeneity in turn may impact on the behaviour of interstitial mesenchymal cells in genetic diseases.


Assuntos
Adipogenia/fisiologia , Antígenos Ly/metabolismo , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Diferenciação Celular , Camundongos
9.
Cell Death Dis ; 12(12): 1092, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795230

RESUMO

Recent studies demonstrated reduced blood lysosomal acid lipase (LAL) activity in patients with nonalcoholic fatty liver disease (NAFLD). We aimed to verify hepatic LAL protein content and activity in in vitro and in vivo models of fat overload and in NAFLD patients. LAL protein content and activity were firstly evaluated in Huh7 cells exposed to high-glucose/high-lipid (HGHL) medium and in the liver of C57BL/6 mice fed with high-fat diet (HFD) for 4 and 8 months. LAL protein was also evaluated by immunohistochemistry in liver biopsies from 87 NAFLD patients and 10 controls, and correlated with hepatic histology. Huh7 cells treated with HGHL medium showed a significant reduction of LAL activity, which was consistent with reduced LAL protein levels by western blotting using an antibody towards the N-term of the enzyme. Conversely, antibodies towards the C-term of the enzyme evidenced LAL accumulation, suggesting a post-translational modification that masks the LAL N-term epitope and affects enzymatic activity. Indeed, we found a high rate of ubiquitination and extra-lysosomal localization of LAL protein in cells treated with HGHL medium. Consistent with these findings, inhibition of proteasome triggered dysfunctional LAL accumulation and affected LAL activity. Accumulation of ubiquitinated/dysfunctional LAL was also found in the liver of HFD fed mice. In NAFLD patients, hepatic levels of non-ubiquitinated/functional LAL were lower than in controls and inversely correlated with disease activity and some of the hallmarks of reduced LAL. Fat overload leads to LAL ubiquitination and impairs its function, possibly reducing hepatic fat disposal and promoting NAFLD activity.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Esterol Esterase/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Transfecção
10.
Cells ; 9(7)2020 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708412

RESUMO

The interstitial space surrounding the skeletal muscle fibers is populated by a variety of mononuclear cell types. Upon acute or chronic insult, these cell populations become activated and initiate finely-orchestrated crosstalk that promotes myofiber repair and regeneration. Mass cytometry is a powerful and highly multiplexed technique for profiling single-cells. Herein, it was used to dissect the dynamics of cell populations in the skeletal muscle in physiological and pathological conditions. Here, we characterized an antibody panel that could be used to identify most of the cell populations in the muscle interstitial space. By exploiting the mass cytometry resolution, we provided a comprehensive picture of the dynamics of the major cell populations that sensed and responded to acute damage in wild type mice and in a mouse model of Duchenne muscular dystrophy. In addition, we revealed the intrinsic heterogeneity of many of these cell populations.


Assuntos
Músculo Esquelético/patologia , Regeneração , Análise de Célula Única/métodos , Animais , Cardiotoxinas , Contagem de Células , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA