RESUMO
BACKGROUND/OBJECTIVE: To explore the anti-tumour activity of combining AKT inhibition and docetaxel in PTEN protein null and WT prostate tumours. METHODS: Mechanisms associated with docetaxel capivasertib treatment activity in prostate cancer were examined using a panel of in vivo tumour models and cell lines. RESULTS: Combining docetaxel and capivasertib had increased activity in PTEN null and WT prostate tumour models in vivo. In vitro short-term docetaxel treatment caused cell cycle arrest in the majority of cells. However, a sub-population of docetaxel-persister cells did not undergo G2/M arrest but upregulated phosphorylation of PI3K/AKT pathway effectors GSK3ß, p70S6K, 4E-BP1, but to a lesser extent AKT. In vivo acute docetaxel treatment induced p70S6K and 4E-BP1 phosphorylation. Treating PTEN null and WT docetaxel-persister cells with capivasertib reduced PI3K/AKT pathway activation and cell cycle progression. In vitro and in vivo it reduced proliferation and increased apoptosis or DNA damage though effects were more marked in PTEN null cells. Docetaxel-persister cells were partly reliant on GSK3ß as a GSK3ß inhibitor AZD2858 reversed capivasertib-induced apoptosis and DNA damage. CONCLUSION: Capivasertib can enhance anti-tumour effects of docetaxel by targeting residual docetaxel-persister cells, independent of PTEN status, to induce apoptosis and DNA damage in part through GSK3ß.
Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Pirimidinas , Pirróis , Masculino , Humanos , Docetaxel/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Transdução de Sinais , Apoptose , Fosfatidilinositol 3-Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , PTEN Fosfo-Hidrolase/metabolismoRESUMO
Approximately 15% of all cancer patients harbor mutated KRAS. Direct inhibitors of KRAS have now been generated and are beginning to make progress through clinical trials. These include a suite of inhibitors targeting the KRASG12C mutation commonly found in lung cancer. We investigated emergent resistance to representative examples of different classes of Ras targeted therapies. They all exhibited rapid reactivation of Ras signaling within days of exposure and adaptive responses continued to change over long-term treatment schedules. Whilst the gene signatures were distinct for each inhibitor, they commonly involved up-regulation of upstream nodes promoting mutant and wild-type Ras activation. Experiments to reverse resistance unfortunately revealed frequent desensitization to members of a panel of anti-cancer therapeutics, suggesting that salvage approaches are unlikely to be feasible. Instead, we identified triple inhibitor combinations that resulted in more durable responses to KRAS inhibitors and that may benefit from further pre-clinical evaluation.
Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de SinaisRESUMO
Antisense oligonucleotides (ASOs) modulate cellular target gene expression through direct binding to complementary RNA. Advances in ASO chemistry have led to the development of phosphorothioate (PS) ASOs with constrained-ethyl modifications (cEt). These next-generation cEt-ASOs can enter cells without transfection reagents. Factors involved in intracellular uptake and trafficking of cEt-ASOs leading to successful target knockdown are highly complex and not yet fully understood. AZD4785 is a potent and selective therapeutic KRAS cEt-ASO currently under clinical development for the treatment of cancer. Therefore, we used this to investigate mechanisms of cEt-ASO trafficking across a panel of cancer cells. We found that the extent of ASO-mediated KRAS mRNA knockdown varied significantly between cells and that this did not correlate with bulk levels of intracellular accumulation. We showed that in cells with good productive uptake, distribution of ASO was perinuclear and in those with poor productive uptake distribution was peripheral. Furthermore, ASO rapidly trafficked to the late endosome/lysosome in poor productive uptake cells compared to those with more robust knockdown. An siRNA screen identified several factors mechanistically involved in productive ASO uptake, including the endosomal GTPase Rab5C. This work provides novel insights into the trafficking of cEt-ASOs and mechanisms that may determine their cellular fate.
Assuntos
Neoplasias/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Fosforotioatos/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas rab5 de Ligação ao GTP/genética , Endossomos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HT29 , Humanos , Neoplasias/patologia , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Fosforotioatos/química , Oligonucleotídeos Fosforotioatos/farmacologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genéticaRESUMO
Mutations in oncogenes such as KRAS and EGFR cause a high proportion of lung cancers. Drugs targeting these proteins cause tumor regression but ultimately fail to elicit cures. As a result, there is an intense interest in how to best combine targeted therapies with other treatments, such as immunotherapies. However, preclinical systems for studying the interaction of lung tumors with the host immune system are inadequate, in part due to the low tumor mutational burden in genetically engineered mouse models. Here we set out to develop mouse models of mutant KRAS-driven lung cancer with an elevated tumor mutational burden by expressing the human DNA cytosine deaminase, APOBEC3B, to mimic the mutational signature seen in human lung cancer. This failed to substantially increase clonal tumor mutational burden and autochthonous tumors remained refractory to immunotherapy. However, establishing clonal cell lines from these tumors enabled the generation of an immunogenic syngeneic transplantation model of KRAS-mutant lung adenocarcinoma that was sensitive to immunotherapy. Unexpectedly, antitumor immune responses were not directed against neoantigens but instead targeted derepressed endogenous retroviral antigens. The ability of KRASG12C inhibitors to cause regression of KRASG12C -expressing tumors was markedly potentiated by the adaptive immune system, highlighting the importance of using immunocompetent models for evaluating targeted therapies. Overall, this model provides a unique opportunity for the study of combinations of targeted and immunotherapies in immune-hot lung cancer. SIGNIFICANCE: This study develops a mouse model of immunogenic KRAS-mutant lung cancer to facilitate the investigation of optimal combinations of targeted therapies with immunotherapies.
Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Animais , Citidina Desaminase/genética , Citosina Desaminase/genética , Citosina Desaminase/uso terapêutico , Modelos Animais de Doenças , Receptores ErbB/genética , Humanos , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/terapia , Camundongos , Antígenos de Histocompatibilidade Menor , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
Group diversity researchers are often faced with the problem of calculating diversity indices for groups that are incomplete due to participant nonresponse. Because participant nonresponse may attenuate the correlations that are observed between group diversity scores and outcome variables, some researchers use group-retention rules based on within-group response rates. With this approach, only those groups that have a within-group response rate at, or higher than, the rate prescribed by the group-retention rule are retained for subsequent analyses. We conducted two sets of experiments using computer simulations to determine the usefulness of group-retention rules. We found that group-retention rules are not a substitute for a high response rate and may decrease the accuracy of observed relations, and consequently, we advise against their use in diversity research.
Assuntos
Simulação por Computador , Modelos Teóricos , Projetos de Pesquisa , Fatores Etários , Diversidade Cultural , Humanos , Fatores Sexuais , Fatores SocioeconômicosRESUMO
Introduction: The term aerotoxic syndrome (ATS) was proposed 20 years ago to describe a constellation of symptoms reported by pilots and cabin crew following exposure to hydraulic fluids, engine oil, and pyrolysis products during flight. Hydraulic fluids and engine oil contain a large number of potentially toxic chemicals, including various organophosphate compounds (OPCs). However, ATS is not yet recognised as a valid diagnosis in aviation or general medicine, because the incidence and aetiology continues to be debated.Discussion: Early studies report findings from symptom surveys or cognitive assessments of small samples of self-selected aircrew, but objective measures of exposure were lacking. Over the last decade, researchers have used more sophisticated techniques to measure exposure, such as on board monitoring studies and biomarkers of exposure (e.g., reduced levels of serum butyrylcholinesterases [BChE]) and more sophisticated techniques to detect nervous system injuries such as fMRI and autoantibody testing. Consideration has also been given to inter-individual differences in the ability to metabolise certain chemical compounds as a result of genetic polymorphisms and exclusion of other potential causes of ill health.Conclusions: We discuss factors which suggest a diagnosis of probable ATS; recommend an assessment protocol which incorporates the aforementioned techniques; and propose diagnostic criteria for probable ATS, based on our previously reported findings in aircrew and the results of recent studies.
Assuntos
Poluição do Ar em Ambientes Fechados/efeitos adversos , Aeronaves , Doenças Profissionais/diagnóstico , Poluentes Ocupacionais do Ar/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental/análise , Humanos , Imageamento por Ressonância Magnética , Exposição Ocupacional/análise , SíndromeRESUMO
The human protein kinome comprises 535 proteins that, with the exception of approximately 50 pseudokinases, control intracellular signaling networks by catalyzing the phosphorylation of multiple protein substrates. While a major research focus of the last 30 years has been cancer-associated Tyr and Ser/Thr kinases, over 85% of the kinome has been identified to be dysregulated in at least one disease or developmental disorder. Despite this remarkable statistic, for the majority of protein kinases and pseudokinases, there are currently no inhibitors progressing toward the clinic, and in most cases, details of their physiologic and pathologic mechanisms remain at least partially obscure. By curating and annotating data from the literature and major public databases of phosphorylation sites, kinases, and disease associations, we generate an unbiased resource that highlights areas of unmet need within the kinome. We discuss strategies and challenges associated with characterizing catalytic and noncatalytic outputs in cells, and describe successes and new frontiers that will support more comprehensive cancer-targeting and therapeutic evaluation in the future. Cancer Res; 78(1); 15-29. ©2017 AACR.
Assuntos
Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Humanos , Mutação , Fosforilação , Proteínas Quinases/químicaRESUMO
The extensive research examining relations between group member dissimilarity and outcome measures has yielded inconsistent results. In the present research, the authors used computer simulations to examine the impact that a methodological feature of such research, participant nonresponse, can have on dissimilarity-outcome relations. Results suggest that using only survey responders to calculate dissimilarity typically results in underestimation of true dissimilarity effects and that these effects can occur even when response rates are high.
Assuntos
Simulação por Computador , Modelos Psicológicos , Psicologia/instrumentação , Psicologia/estatística & dados numéricos , Local de Trabalho/psicologia , Comportamento Cooperativo , HumanosRESUMO
Activating mutations in KRAS underlie the pathogenesis of up to 20% of human tumors, and KRAS is one of the most frequently mutated genes in cancer. Developing therapeutics to block KRAS activity has proven difficult, and no direct inhibitor of KRAS function has entered clinical trials. We describe the preclinical evaluation of AZD4785, a high-affinity constrained ethyl-containing therapeutic antisense oligonucleotide (ASO) targeting KRAS mRNA. AZD4785 potently and selectively depleted cellular KRAS mRNA and protein, resulting in inhibition of downstream effector pathways and antiproliferative effects selectively in KRAS mutant cells. AZD4785-mediated depletion of KRAS was not associated with feedback activation of the mitogen-activated protein kinase (MAPK) pathway, which is seen with RAS-MAPK pathway inhibitors. Systemic delivery of AZD4785 to mice bearing KRAS mutant non-small cell lung cancer cell line xenografts or patient-derived xenografts resulted in inhibition of KRAS expression in tumors and antitumor activity. The safety of this approach was demonstrated in mice and monkeys with KRAS ASOs that produced robust target knockdown in a broad set of tissues without any adverse effects. Together, these data suggest that AZD4785 is an attractive therapeutic for the treatment of KRAS-driven human cancers and warrants further development.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Modelos Animais de Doenças , Humanos , Camundongos , Mutação/genética , Oligonucleotídeos Antissenso/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/antagonistas & inibidoresRESUMO
Resistance to targeted EGFR inhibitors is likely to develop in EGFR-mutant lung cancers. Early identification of innate or acquired resistance mechanisms to these agents is essential to direct development of future therapies. We describe the detection of heterogeneous mechanisms of resistance within populations of EGFR-mutant cells (PC9 and/or NCI-H1975) with acquired resistance to current and newly developed EGFR tyrosine kinase inhibitors, including AZD9291. We report the detection of NRAS mutations, including a novel E63K mutation, and a gain of copy number of WT NRAS or WT KRAS in cell populations resistant to gefitinib, afatinib, WZ4002, or AZD9291. Compared with parental cells, a number of resistant cell populations were more sensitive to inhibition by the MEK inhibitor selumetinib (AZD6244; ARRY-142886) when treated in combination with the originating EGFR inhibitor. In vitro, a combination of AZD9291 with selumetinib prevented emergence of resistance in PC9 cells and delayed resistance in NCI-H1975 cells. In vivo, concomitant dosing of AZD9291 with selumetinib caused regression of AZD9291-resistant tumors in an EGFRm/T790M transgenic model. Our data support the use of a combination of AZD9291 with a MEK inhibitor to delay or prevent resistance to AZD9291 in EGFRm and/or EGFRm/T790M tumors. Furthermore, these findings suggest that NRAS modifications in tumor samples from patients who have progressed on current or EGFR inhibitors in development may support subsequent treatment with a combination of EGFR and MEK inhibition.
Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Receptores ErbB/antagonistas & inibidores , Acrilamidas/administração & dosagem , Compostos de Anilina/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzimidazóis/administração & dosagem , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Mutação , Transdução de Sinais , Proteínas ras/genética , Proteínas ras/metabolismoRESUMO
Therapeutic exploitation of the next generation of drugs targeting the genetic basis of cancer will require an understanding of how cancer genes regulate tumor biology. Reprogramming of tumor metabolism has been linked with activation of oncogenes and inactivation of tumor suppressors. Well established and emerging cancer genes such as MYC, IDH1/2 and KEAP1 regulate tumor metabolism opening up opportunities to evaluate metabolic pathway inhibition as a therapeutic strategy in these tumors.
Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Desenho de Fármacos , Metabolismo Energético/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Animais , Biomarcadores Tumorais/genética , Metabolismo Energético/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Continued androgen receptor (AR) expression and signaling is a key driver in castration-resistant prostate cancer (CRPC) after classical androgen ablation therapies have failed, and therefore remains a target for the treatment of progressive disease. Here, we describe the biological characterization of AZD3514, an orally bioavailable drug that inhibits androgen-dependent and -independent AR signaling. AZD3514 modulates AR signaling through two distinct mechanisms, an inhibition of ligand-driven nuclear translocation of AR and a downregulation of receptor levels, both of which were observed in vitro and in vivo. AZD3514 inhibited testosterone-driven seminal vesicle development in juvenile male rats and the growth of androgen-dependent Dunning R3327H prostate tumors in adult rats. Furthermore, this class of compound showed antitumor activity in the HID28 mouse model of CRPC in vivo. AZD3514 is currently in phase I clinical evaluation.
Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos/farmacologia , Neoplasias de Próstata Resistentes à Castração/patologia , Piridazinas/farmacologia , Receptores Androgênicos/metabolismo , Glândulas Seminais/efeitos dos fármacos , Acetato de Abiraterona , Antagonistas de Receptores de Andrógenos/metabolismo , Androstadienos/farmacologia , Animais , Antineoplásicos/metabolismo , Benzamidas , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Nus , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Piridazinas/síntese química , Piridazinas/metabolismo , Ratos , Ratos Wistar , Receptores Androgênicos/genética , Glândulas Seminais/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
We describe the characterization of Ybp1, a novel protein, in Saccharomyces cerevisiae, that is required for the oxidative stress response to peroxides. Ybp1 is required for H2O2-induced expression of the antioxidant encoding gene TRX2. Our data indicate that the effects of Ybp1 are mediated through the Yap1 transcription factor. Indeed, Ybp1 forms a stress-induced complex with Yap1 in vivo and stimulates the nuclear accumulation of Yap1 in response to H2O2 but not in response to the thiol-oxidizing agent diamide. The H2O2-induced nuclear accumulation of Yap1 is regulated by the oxidation of specific cysteine residues and is dependent on the thiol peroxidase Gpx3. Our data suggest that Ybp1 is required for the H2O2-induced oxidation of Yap1 and acts in the same pathway as Gpx3. Consequently, Ybp1 represents a novel class of stress regulator of Yap1. These data have important implications for the regulation of protein oxidation and stress responses in eukaryotes.